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“I do not think of old age as an ever grimmer time that one must somehow endure and make the
best of, but as a time of leisure and freedom, freed from the factitious urgencies of earlier days,
free to explore whatever I wish, and to bind the thoughts and feelings of a lifetime together.”

Oliver Sacks
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1 General Introduction

Most of us have probably experienced the following situation at some point in our lives: We are
in the middle of a conversation and suddenly fail to produce the intended word although we
are certain we know the word and have used it before. Often, this phenomenon is related to the
retrieval of factual knowledge from semantic memory, for example the name of the actor who
played Forrest Gump or the name of the musical instrument that is played without physical
contact by the performer. Although such transient failures to access conceptual knowledge
are common across all age groups, the rate of so-called tip-of-the-tongue episodes and word
retrieval problems increases with age and makes them a frequent complaint among healthy
elderly (Bowles & Poon, 1985; Burke & Shafto, 2004; Lovelace & Twohig, 1990).

The age-related increase in failures to access and retrieve information from semantic
memory stands in contrast to the observation, that semantic knowledge is usually preserved
or even grows through adulthood into very old age (Nyberg et al., 1996; Rönnlund et al., 2005;
Verhaeghen, 2003) and that general communication abilities remain largely intact in healthy
aging (Kintz et al., 2016). This paradox has been explained in terms of less efficient access
and retrieval processes during language processing, which rely on cognitive control functions
such as working memory, attention, and inhibitory control, and are well established to steadily
decline with age (Hedden & Gabrieli, 2004; Park & Reuter-Lorenz, 2009). To date, the neural
mechanisms underlying those age-related changes in access to semantic memory are poorly
understood. However, a better understanding of the neural reorganization processes and the
neural resources that help to maintain cognitive functions would be mandatory to promote
successful aging.

The present thesis addresses this gap by exploring age-accompanied changes in the neural
network architecture during semantic processing and their impact on behavior. Using func-
tional magnetic resonance imaging (fMRI), cognitive measures, and transcranial magnetic
stimulation (TMS), the age-related interaction of domain-specific and domain-general neural
networks during the retrieval and access of information from semantic memory were investi-
gated. Study 1—an fMRI study—addressed the contribution of domain-general (task-positive
and task-negative) networks to a semantic word retrieval task in healthy young and older
adults, while study 2 analyzed the same data set applying a whole-brain functional connectiv-
ity approach and exploring age differences in the coupling of task-relevant networks and their
behavioral relevance. Graph theoretical measures of brain system integration and segregation
were used to examine the network topology in young and older adults. Finally, study 3—a
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TMS-fMRI study—tested the potential of enhancing a hub in the prefrontal cortex associated
with domain-general but also semantic control processes via facilitatory stimulation in a group
of healthy middle-aged to older adults. The behavioral impact of the stimulation and its neural
correlates were investigated in a subsequent fMRI experiment employing a semantic language
comprehension task. Overall, the findings of these studies point towards a pattern of neural
reorganization in the aging brain, even when language processing abilities remain intact. We
provide evidence for age-related neural dedifferentiation in semantic cognition and shed new
light on the compensatory potential of such reconfiguration processes.

1.1 Cognitive Aging

Aging is accompanied by a myriad of cognitive changes. Although trajectories of cognitive
aging are highly individual and inter-individual variability is striking (Cabeza et al., 2018), the
steady age-related decline of cognitive control processes—also referred to as fluid intelligence—
is well established (Figure 1.1; Hedden & Gabrieli, 2004). Such processes have been shown to
exhibit pronounced age effects and include the domains of working memory, processing speed,
mental flexibility, spatial reasoning, and inhibitory control (Hasher et al., 1991; Mitchell et al.,
2000; Salthouse, 1996). Semantic memory on the other hand, which refers to the knowledge
about words, concepts, and ideas we have accumulated across the lifespan (so-called crystallized
intelligence), remains stable or might even increase due to the ongoing accrual of knowledge
and experience across the life course (Nyberg et al., 1996; Salthouse, 2004; Verhaeghen, 2003).

Due to the largely intact system of semantic memory in healthy aging, language processing
is typically not associated with strong age-related decline. However, changes have been
reported on the word, sentence, and discourse level (Kemper & Anagnopoulos, 1989; Obler &
Pekkala, 2008; Peelle, 2019). On the language production side, a common complaint relates
to increased word finding problems, as described in the Introduction. Longitudinal research
revealed an initial decline in lexicosemantic retrieval abilities for people in their 50s, though
the strongest effects have been observed from the age of 70 (Au et al., 1989; Au et al., 1995).
Moreover, effects of aging on sentence and discourse production in the form of reduced local
and global coherence have been observed, which becomes most evident when new information
needs to be stored and incorporated (Wright et al., 2014). For language comprehension,
age-related difficulties emerge when sentence processing becomes cognitively demanding
(Wingfield & Stine-Morrow, 2000), for example when sentences are ambiguous, long, or
complex (Goral et al., 2011; Kemper et al., 2004; Obler et al., 1991). Most cognitive accounts
relate these changes to general cognitive slowing and reduced working memory and inhibition
abilities. This explanation is further supported by the observation that often little or no
effects of age are observed when access to semantic memory is effortless, for instance when
the size of vocabulary is assessed without any time constraints (Verhaeghen, 2003), when
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Figure 1.1 Changes in cognition across the adult life span. Cool colors represent cognitive
domains that rely on cognitive control resources and experience a substantial decline in later life.
Warm colors represent domains that rely on semantic memory and are preserved or even increase into
old age. Republished with permission of Annual Reviews, Inc., from The Adaptive Brain: Aging and
Neurocognitive Scaffolding, by Park, D. C., & Reuter-Lorenz, P., in Annual Review of Psychology, Vol.
60, Copyright © 2009; permission conveyed through Copyright Clearance Center, Inc.

discourse revolves around familiar and highly regularized topics (Kintz et al., 2016), or when
semantic resources (larger vocabulary and world knowledge) can be used as cognitive reserve
to overcome difficulties imposed through enhanced cognitive demands (Beese et al., 2019;
Stine-Morrow et al., 1996). The impact of aging on language processing thus seems to the
depend on the cognitive demand of a process and the individual resources in the form of
domain-general cognitive abilities and semantic knowledge.

1.2 Neural Aging

In the brain, cognitive changes with age are mirrored by large-scale reorganization processes
at the structural and functional levels (Cabeza et al., 2018; Grady, 2012; Morcom & Johnson,
2015). A better understanding of the neural factors that drive cognitive decline but also help
preservation can help to disentangle interindividual variability and define early markers of
pathological decline before they impact everyday function.
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1.2.1 Structural Brain Aging

Cerebral atrophy is a hallmark of neuroanatomical changes with age. The age-accompanied
reduction in gray and white matter volume along with the expansion of the ventricular system
have been extensively studied in healthy and pathological aging and associatedwith decrements
in specific cognitive functions (Fjell & Walhovd, 2010, 2020; Raz, 2004). Although a reduction
in gray matter volume follows a linear time course from early adulthood onwards (Toga et al.,
2006), not all cortical regions are affected to the same extent. Structural brain aging is highly
heterogeneous across cortical regions with areas that mature later in life, like association
cortices, being especially vulnerable to age-related loss in gray matter compared with earlier-
developed areas like sensorimotor regions (McGinnis et al., 2011; Raz et al., 2005; Salat et al.,
2004; Yeatman et al., 2014). Similarly, white matter tracts of association cortices, notably in the
prefrontal cortex, have been shown to decline earliest, while fibers of primary sensory and
motor regions are more resilient to structural changes (Bender et al., 2016; Gunning-Dixon
et al., 2009). Moreover, lesions in the brain’s white matter, which are known as white matter
hyperintensities due to their increased signal intensity in MRI scans, have become a measure
of clinical interest in aging (Brickman et al., 2009; Prins & Scheltens, 2015). Although such
hyperintensities are more common in older age in general (Morris et al., 2009), numerous
studies have associated a high volume of white matter hyperintensities with Alzheimer’s
disease, small vessel disease, and cognitive decline, making them an important clinical marker
(Debette &Markus, 2010; Prins & Scheltens, 2015; Tubi et al., 2020). Despite these advances, our
understanding of the relationship between structural brain aging and cognitive decline is still
limited. Defining the transition from healthy to pathological aging continues to pose a major
challenge and might only be solvable within a multidimensional framework incorporating life
span and environmental factors, which are both known to impact morphometry and cognition
(Fjell & Walhovd, 2020).

In the domain of semantic cognition, the relationship between semantic memory and
pathological brain aging has been extensively studied since impaired word finding is a major
symptom occurring early in neurodegenerative diseases like Alzheimer’s disease and the
semantic and logopenic variants of primary progressive aphasia (Bonner et al., 2010; Förstl
& Kurz, 1999; Frank, 1994; Rodríguez-Aranda et al., 2016; Taler & Phillips, 2008). Deficits in
accessing semantic memory have been associated with atrophy of the temporal lobes including
the anterior hippocampus (D. Chan et al., 2001; Rodríguez-Aranda et al., 2016; Serra et al., 2010;
Venneri et al., 2008) and in a later stage also more wide-spread atrophy of the predominantly
left-lateralized frontotemporal language network (Fama et al., 2000; Rodríguez-Aranda et al.,
2016). These changes are paralleled by a decline in the myelination of fiber tracts, of which
the uncinate fasciculus, a pathway between inferior frontal and anterior temporal regions,
and the inferior-fronto-occipital fasciculus, which runs through the extreme capsule, have
been especially related to pathological deficits in semantic processing (Agosta et al., 2010;
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Rodríguez-Aranda et al., 2016; Saur et al., 2008).
In comparison, much less work has focused on the relationship of structural brain aging

and semantic cognition in healthy aging. Due to its high clinical relevance, healthy older
adults usually serve as control participants in studies on pathological aging. Furthermore, as
described earlier, semantic processing is typically less affected by age-related decline than
domain-general cognitive control functions, which might be due to better preservation of the
neuroanatomical correlates and successful compensatory reconfiguration of neural resources
in healthy aging. However, there is some evidence that semantic processing is affected by
structural brain aging in healthy older adults as well. Poorer and slower task performance has
been associated with greater atrophy of gray matter in the right operculum during semantic
judgment (Peelle et al., 2013; Zhu et al., 2017) and with reduced gray matter volume in bilateral
prefrontal and temporal cortices as well as reduced white matter density during word retrieval
(Obler et al., 2010). Moreover, research on word retrieval failures, such as the so-called tip-of-
the-tongue phenomenon outlined above, suggests that neural atrophy underpins the increase
in problems to access and retrieve lexicosemantic information (Shafto et al., 2007; Shafto et al.,
2010).

1.2.2 Functional Brain Aging

Structural brain aging is accompanied by age-related changes in neural activity during task
processing. While the most straightforward assumption might posit a reduction in neural
recruitment paralleling cognitive declines and cerebral atrophy, copious research over the
last decades has shown that the picture is much more complex. Functional brain aging is
characterized by decreases but also increases in activity, which are mediated by the cognitive
demand of a task and an individual’s neural resources in the form of reserve, maintenance,
and compensation.

Early research on functional brain aging focused on two frequent patterns associated
with age-related changes during task processing, increased activity of bilateral frontal regions
(hemispheric asymmetry reduction in older adults, HAROLD; Cabeza, 2002) and an enhanced
recruitment of the prefrontal cortex alongside reduced activity in posterior brain regions
(posterior-to-anterior shift in aging, PASA; Davis et al., 2008). These observations across
multiple cognitive domains led to the suggestion that neurocognitive aging features a reduced
specialization or distinctiveness of “core” processing areas of a task and greater activation of
cognitive control regions to make up for the domain-specific under-recruitment (Park et al.,
2004). It was further argued that older adults experience greater task demands at a lower
level than young adults and recruit additional resources to accomplish task-related objectives
(Hedden &Gabrieli, 2004). Thus, the age-accompanied over-recruitment of (bilateral) prefrontal
regions, which are associated with executive functions and cognitive control, might serve a
compensatory purpose. However, to prove such a compensatory mechanism, an association
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between increased activation and (preserved) cognitive performance is vital. Otherwise, the
over-recruitment might rather point to an inefficient pattern of age-related change in activity
and thus represent neural dedifferentiation. This important distinction was outlined in the
compensation-related utilization of neural circuits hypothesis (CRUNCH; Reuter-Lorenz &
Cappell, 2008). According to CRUNCH, older adults can successfully compensate for processing
inefficiencies by recruiting additional neural resources to maintain a similar performance level
as young adults. However, when task demands increase further, brain activity in older adults
might reach a plateau, leading to more errors and a pronounced drop in performance. In a
similar vein, the scaffolding theory of aging and cognition (STAC; Park & Reuter-Lorenz, 2009;
Reuter-Lorenz & Park, 2014) incorporates compensatory and dedifferentiation accounts of
age-dependent changes in neural activity secondary to structural changes. Further, STAC
tries to relate these changes to factors that influence brain activation such as life course and
environmental causes but also the potential of interventions and cognitive training to reverse
decline or improve the efficiency of compensatory scaffolding (Reuter-Lorenz & Park, 2014).

Notably, with the advancement of neuroimaging techniques in the study of neurocognitive
aging and abundant research across cognitive domains, models like CRUNCH and STAC have
become more agnostic about the particular location of compensatory recruitment, which
might be domain-specific or domain-general. Additional activation of domain-specific regions
has been associated with the age-related upregulation of contralateral homologous regions
for domains with strong lateralization in younger adults, including the sensorimotor system
(Ward, 2006), verbal working memory (Reuter-Lorenz et al., 2000; Rypma & D’Esposito, 2000),
language comprehension (Peelle et al., 2010; Tyler et al., 2010), and language production
(Wierenga et al., 2008). The increased recruitment of domain-general systems with age aligns
with the notion of frameworks like HAROLD and PASA that the brain activation of older adults
is less specialized and hence engages more cognitive control regions. However, in contrast
to these early accounts, meta-analyses across cognitive domains have shown that the age-
related increase in activation is not limited to the prefrontal cortex (Hoffman & Morcom, 2018;
H.-J. Li et al., 2015; Spreng et al., 2010). Meta-analytic results revealed age-related additional
recruitment of frontal and parietal regions which are associated with cognitive control systems
such as the resting-state frontoparietal network (FPN; Damoiseaux et al., 2006; Smith et al.,
2009; Yeo et al., 2011) and the task-related multiple-demand network (MDN; Duncan, 2010;
Fedorenko et al., 2013). Moreover, where additional activation with age occurs is task-specific
(Grady, 2012; H.-J. Li et al., 2015). For instance, meta-analytic results for studies employing
memory encoding and retrieval operations demonstrated additional increases in the medial
and inferior temporal lobe, posterior cingulate cortex, and inferior parietal lobe with age—areas
which are typically linked to the default mode network (DMN; H.-J. Li et al., 2015). Furthermore,
an age-related reduced deactivation of the DMN relative to its activation in young adults has
also been reported for a number of tasks that usually rely heavily on executive systems (Grady
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et al., 2010).
Whether this age-related over-recruitment of different brain regions and neural systems is

compensatory or a mere consequence of reduced specialization of functional areas, remains a
point of debate. While the best preservation of cognitive functions has been associated with
a youth-like activation pattern due to processes of maintenance and reserve (Cabeza et al.,
2018; Grady, 2012; Spreng et al., 2010), the compensatory potential of increased activity can
only be assessed in relation to cognitive performance. In this regard, increased activity or the
recruitment of additional brain regions can indicate successful or unsuccessful compensation,
depending on the relationship with performance. If, however, such a link is missing, the
over-recruitment might be described as attempted compensation and most likely indicates an
age-related change in the form of neural dedifferentiation or inefficiency (Cabeza et al., 2018;
Cabeza & Dennis, 2013). Finally, a better understanding of the behavioral consequences of
functional brain aging might be gained through a network science approach since cognition is
based on the flexible interaction of large-scale task-relevant networks.

1.2.3 Functional Network Aging

The recent conceptualization of the brain as a complex modular system (Meunier et al., 2009;
Power et al., 2011) provides a unique framework to examine age-related changes in neural
information processing and their consequences for behavior. The interaction of brain regions
is assessed via functional connectivity, which quantifies statistical dependence between neural
time series (Friston, 1994). In neuroimaging, functional connectivity is usually defined as
the strength of correlation or covariance between a pair of brain structures and is based on
the underlying assumption that a statistical relationship indicates a coupling of these areas
(Eickhoff & Müller, 2015). Importantly, functional connectivity does not equal structural
connectivity and often communication between brain regions can be observed in the absence
of a direct anatomical connection. In fact, functional connectivity is often even measured
without a task context during resting-state fMRI, which assesses the intrinsic connectivity
of regions and thus allows inferences about the organization of large-scale brain networks
(Buckner et al., 2013; Yeo et al., 2011).

Changes in the functional connectome have become a hallmark of brain aging. Embedding
age-related changes in local activity in whole-brain networks revealed universal patterns. One
prominent observation in resting-state fMRI is the reduced functional connectivity within
and increased connectivity between different networks with age. A decrease in connectivity
has been repeatedly found for regions within the DMN (for a review, see Ferreira & Busatto,
2013)—a cognitive system which shows strong functional connectivity during rest (Greicius
et al., 2003) and reduced activation during task processing in young adults (Raichle et al.,
2001). Moreover, less within- and greater between-network functional connectivity at rest
has also been shown for other large-scale neural systems, including dorsal attention, salience,
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and sensorimotor networks (Allen et al., 2011; C.-C. Huang et al., 2015; Spreng et al., 2016;
H.-Y. Zhang et al., 2014; Zonneveld et al., 2019). These changes have been interpreted as
dedifferentiation of network interactions, paralleling local task-related neural changes (Grady,
2012). Longitudinal investigations confirmed the observations from cross-sectional studies
and showed that within-network functional connectivity of, for instance, the DMN and FPN
decreases continuously with age, while their between-network connectivity follows a u-shaped
trajectory with initial declines but a steady increase from the mid-sixties (Betzel et al., 2014;
Ng et al., 2016).

Further insight on the aging functional connectome can be gained by means of network
science and graph theory, which offer an analytical framework to study organization principles
of complex networks such as the human brain (Bullmore & Sporns, 2012; Fornito et al.,
2016; Rubinov & Sporns, 2010). To this end, networks are modeled as a graph, where brain
structures such as regions of interest or voxels are the nodes (also called vertices) and functional
connectivity values define the edges (also called links) between them (Figure 1.2). Nodes of
a graph that cluster together can be described as modules, which would be equivalent to
individual brain networks or subnetworks. Graph theoretical measures can then be applied
to understand a graph’s topology and assess specific network features. The so-called “small
world” organization is an important characteristic of brain graphs that has been repeatedly
described for functional connectivity networks of younger adults in relation to their cognitive
performance (Bassett & Bullmore, 2017; Bassett et al., 2009; Bullmore & Sporns, 2012). It
describes a topological organization of the brain that combines local information processing
with global information integration aimed at optimizing global cost efficiency.

Another prominent property of the human brain is the so-called “rich club” organization
(Figure 1.2, Hagmann et al., 2008; van den Heuvel et al., 2012; van den Heuvel & Sporns, 2011).
It pertains to the existence of hub nodes, which are defined by a high degree, i.e., a high number
of connections (edges), either within their community (provincial hubs) or diversely distributed
across communities (connector hubs; Bertolero et al., 2017; Hagmann et al., 2008). Connector
hubs play an important role in facilitating communication between communities (modules)
of a graph and previous work has highlighted their crucial role for integrative processing in
resting- and task-state networks (Cohen & D’Esposito, 2016). Notably, it has been found that
connector hubs tend to be more densely connected among themselves, thus forming a rich
club of nodes, which are distributed among several different functional networks and serve as
gatekeepers to coordinate interactions with lower-degree regions. Hence, the healthy young
adult brain maintains a balance of brain system integration and segregation, which is wired
for an efficient information flow across networks.

Numerous studies have revealed age-related changes to this modular organization. In
line with the observation of reduced within- and increased between-network functional
connectivity with age as outlined above, a general decline of functional network segregation
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Figure 1.2 Fundamental graph theoretical concepts. (A) Graphs consist of a set of nodes and
edges, where nodes represent brain structures, e.g., regions of interest or voxels, and edges represent
measures of functional connectivity, e.g., correlation. Nodes that cluster together form modules, which
have dense interconnectivity and increase the efficient information flow within such communities.
Modularity is a measure of segregation. Provincial hubs are nodes with many connections within
a module. To enhance global efficiency for information flow across modules, connector hubs with
connections between modules exist. (B) A node’s degree is defined by the number of its edges. The
higher a node’s degree, the more central this node is in a given community. In a weighted network,
strength reflects the weight of an edge. For functional connectivity measures, such as correlation
between nodes, higher values indicate higher strength. (C) The average shortest path length across
all pairs of nodes of a graph is a measure of integration and indicates the efficiency for information
transmission. (D) Some hubs cluster together and form a “rich club”, which is characterized by dense
connectivity among its nodes.

and greater integration across the lifespan has been reported in resting-state (M. Y. Chan et al.,
2014; Setton et al., 2022; Stumme et al., 2020) but also task-based investigations (Deng et al.,
2021; Geerligs et al., 2014; Spreng et al., 2016). Moreover, increasing age has been associated
with reduced small-world organization, modularity, and local and global efficiency of functional
brain networks (Betzel et al., 2014; Cao et al., 2014; Chong et al., 2019; Geerligs et al., 2015).

Association between changes in the functional network architecture and cognition with age

Importantly, these age-related reorganization processes have been associated with cognitive
performance. The majority of results stems from resting-state investigations, where functional
connectivity or graph theoretical results are correlated with cognitive measures assessed
outside the MRI. Most studies associated network dedifferentiation with cognitive decline,
especially in the domains of attention (Chong et al., 2019), episodic memory (M. Y. Chan et al.,
2014), verbal and visual memory (Sala-Llonch et al., 2014), and executive functions in general
(Madden et al., 2020).

Interestingly, age-accompanied differences in network topology during task processing
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largely concur with reported patterns in resting-state fMRI in the form of reduced within- and
stronger between-network functional connectivity and decreased segregation across multiple
functional networks (Deng et al., 2021; Geerligs et al., 2014; Rieck et al., 2021; Spreng et
al., 2016). However, their behavioral relevance seems to depend on the cognitive resources
required for the task of interest. Most research has been conducted in domains well known to
steadily decline with age, such as episodic and working memory, and reported compensational
recruitment of control and attention networks for successful performance (Crowell et al., 2020;
Deng et al., 2021; Gallen et al., 2016) but also maintenance processes with age to preserve
neural resources despite structural deterioration (Capogna et al., 2022; Pongpipat et al., 2021).

The investigation of neural reorganization processes in cognitive abilities that remain
stable with age, like language, creativity, and crystallized intelligence in general, offers a
different perspective. In line with the recently proposed default-executive coupling hypothesis
of aging (DECHA; Spreng & Turner, 2019; Turner & Spreng, 2015), increased connectivity
between usually anti-correlated networks such as executive and default networks might be
advantageous for older adults when access to semantic memory and little cognitive control are
required so that they can rely on prior knowledge to maintain high performance (Adnan et al.,
2019; Spreng et al., 2016). According to DECHA, the commonly reported activation increase
of cognitive control regions and the attenuated suppression of the DMN co-occur and are
functionally coupled in older adults. These changes of the functional network architecture
reflect a shift in cognition in later life, the so-called semanticization of cognition: Older adults
tend to rely more on their preserved semantic knowledge and less on their declining cognitive
control abilities (Spreng et al., 2018; Turner & Spreng, 2015). Whether the increased default-
executive coupling is advantageous or maladaptive for performance, depends on the context
and cognitive demand of a task. Research on creativity and autobiographical memory confirmed
the adaptive potential of increased default-executive coupling in networks of older adults
(Adnan et al., 2019; Spreng et al., 2016). Thus, domains that are usually well-preserved in
aging may inform the current understanding of age-accompanied changes in functional brain
networks and their impact on cognition.

1.3 Neurocognitive Aging in Semantic Cognition

Semantic cognition has a central role in higher cognitive functions, enabling communication
abilities but also recognition of and action with objects, and shaping our general understanding
of the world. As outlined in section 1.1 on cognitive aging, exploring functional brain aging
in the domain of semantic cognition, and more specifically language processing, might offer
a differentiated perspective on successful aging since, in contrast to most other cognitive
functions, semantic memory is usually well preserved in healthy aging (Nyberg et al., 1996;
Rönnlund et al., 2005; Verhaeghen, 2003). Furthermore, semantic cognition has been shown to
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rely on large-scale neural networks in young adults, which engage cognitive control but also
default mode as well as domain-specific resources (Binder et al., 2009; Jackson, 2021; Noonan
et al., 2013). Thus, age-related reorganization processes in this domain might inform current
accounts on neurocognitive aging.

Semantic cognition activates a mainly left-lateralized, widespread neural network in young
adults, including frontal, temporal, and parietal regions (Binder et al., 2009). This network is
thought to consist of distinct, yet interacting elements: a subnetwork for semantic represen-
tation and a subnetwork for semantic control (Lambon Ralph et al., 2017). According to the
Controlled Semantic Cognition framework, the semantic representation system consists of
an amodal “hub”, located in the bilateral anterior temporal lobes (ATL), and modality-specific
“spoke” regions distributed throughout the cortex (Jefferies, 2013; Lambon Ralph et al., 2017).
It is assumed that the ATL mediates between input from sensorimotor regions and output
representations from spokes regions by extracting and melding information to generalizable,
multimodal semantic concepts (Chiou et al., 2018; Lambon Ralph et al., 2017; Patterson et al.,
2007). Although bilateral ATL areas have been linked to semantic cognition, the left ATL
shows greater activation during language-specific processes such as speech comprehension
and production (Rice et al., 2015). The goal-directed access and manipulation of semantic
representations is realized through the semantic control system, which has been shown to rely
on a distributed network of the left inferior and dorsomedial prefrontal cortex, left posterior
middle and inferior temporal gyrus, and right inferior frontal gyrus (Jackson, 2021). Moreover,
the left inferior parietal lobe, especially the anterior angular gyrus, has also been associated
with semantic control processes as we could show in a recent analysis synthesizing multiple
studies involving semantic processing (Kuhnke et al., 2022). Semantic control is critical to
the flexible use of semantic knowledge, enabling the retrieval of less dominant aspects of a
representation, inhibition of irrelevant information, resolution of ambiguous or incongruent
meanings, and the shift between different tasks (Jackson, 2021; Jefferies, 2013).

Importantly, the network of semantic cognition shows notable overlap with domain-general
networks (Figure 1.3). Semantic control regions, including the left dorsomedial prefrontal cor-
tex, inferior temporal gyrus and some parts of bilateral inferior frontal gyrus, have been linked
to the task-specific MDN. Semantic representation, on the other hand, has been associated with
the DMN, which stems from the observation that some semantic “core” regions (ventral inferior
parietal lobe, middle and anterior temporal lobes) are also active during resting-state fMRI
when participants are engaged in semantically rich daydreaming and self-directed thought
(Binder et al., 1999). Recently, it has been suggested that the DMN might play a more promi-
nent role in higher-order cognition than previously assumed and could be central to memory
retrieval (Smallwood et al., 2021). Especially the dorsal medial subsystem of the DMN overlaps
with frontal, temporal, and parietal parts of the semantic cognition network derived through
task-based meta-analyses (Binder et al., 1999; Jackson, 2021). It has been shown to activate
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Figure 1.3 Overlaying the network of semantic cognition (including semantic control) with
the multiple-demand (MD) and the default-mode network (DMN). The template for semantic
cognition was taken from a meta-analysis on semantic processing (Jackson, 2021), the template for the
MD network stems from Fedorenko et al. (2013), and the DM template stems from a the 7-networks
resting-state parcellation (Yeo et al., 2011).

when participants can rely on their semantic knowledge during task processing, such as auto-
matic or “overlearned” processing (Lanzoni et al., 2020; Murphy et al., 2019; Vatansever et al.,
2017). Thus, the engagement of specific components of the semantic cognition network might
best be understood as a gradual organization, where task contexts determine the contribution
of long-term semantic knowledge and semantic control processes to guide behavior.

In line with other cognitive domains, the effect of aging on semantic cognition has been
described as reduced specificity and increased dedifferentiation in task-related activation, as
revealed by a recent meta-analysis (Hoffman & Morcom, 2018). Reduced specificity was most
evident through less activation in semantic control regions and additional activation in the right
inferior frontal gyrus, whereas dedifferentiation was characterized by stronger involvement of
the domain-general MDN and attenuated suppression of the DMN (Hoffman & Morcom, 2018).
Importantly, the additional activation of (bilateral) cognitive control regions was strongest in
tasks, where older adults performed worse than young adults, questioning the compensatory
potential of such upregulation. Moreover, due to the design of most experimental tasks, older
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adults performed generally poorer than young adults, which limits the potential of these
investigations to differentiate between specific (compensatory) and unspecific age-related
neural changes.

As outlined in section 1.2.3 on the association of functional network aging and cognition,
these open questions might be best explored through a functional network approach. However,
research on age-related changes to the functional network architecture during semantic
processing is sparse, which might be surprising due its central role not only in communication
but our general understanding of the world. A number of studies explored such changes
during semantic word retrieval, though confined to domain-specific networks (Baciu et al.,
2016; Marsolais et al., 2014) or predefined regions of interest (ROIs), mainly in the prefrontal
cortex (Meinzer, Flaisch, et al., 2012; Meinzer et al., 2009; Meinzer, Seeds, et al., 2012). Results
showed not only reduced connectivity but a changed pattern of connections in older adults.
Furthermore, a recent investigation on the organization of individually mapped semantic
networks highlighted the role of semantic representation, semantic control and default mode
networks during semantic processing in older adults (Ketchabaw et al., 2022), thus potentially
pointing towards a stronger integration of domain-general networks with age.

1.4 The Potential of Non-Invasive Brain Stimulation in

Neurocognitive Aging

In the last decades, the application of non-invasive brain stimulation (NIBS) techniques to
counteract age-related cognitive decline and to promote successful aging has gained increasing
interest. Similar to the use of NIBS to boost neuropsychological rehabilitation after disruption
of function due to stroke, these techniques might offer the potential to support the preservation
of cognitive functions in pathological but also healthy aging through modulation of cortical
excitability and the enhancement of neuroplasticity. The most common methods applied to
date include repetitive transcranial magnetic stimulation (rTMS), transcranial direct current
stimulation (tDCS), and transcranial alternating current stimulation (tACS). The transcranial
current stimulation methods, tDCS and tACS, are applied via a weak direct current on the scalp
and provoke a sub-threshold modulation of neuronal excitability without triggering action
potentials (Wagner et al., 2007). While tDCS is assumed to be polarity dependent, with anodal
stimulation leading to a depolarization (i.e., excitation) and cathodal stimulation inducing
hyperpolarization (i.e., inhibition; Nitsche & Paulus, 2000), tACS applies an alternating current
that oscillates at a chosen frequency and in this way can be used to synchronize with the
brain’s natural cortical oscillations (Antal et al., 2008).

TMS, on the other hand, induces a local magnetic field, which in turn produces an electric
field in the brain tissue (Barker et al., 1985). In contrast to tDCS and tACS, the electric field
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generated via TMS is supra-threshold and thus sufficient to trigger action potentials and directly
alter neural activity (Wagner et al., 2007). Themagnetic field of TMS is generated through pulses
of electric current that are delivered to a coil placed on the head. To produce a more sustained
alteration in excitability, TMS is usually delivered in the form of repetitive TMS (rTMS) pulses.
Depending on the stimulation protocol and its application during (online) or before (offline)
task processing, rTMS can be used in two ways: (1) to immediately affect an area relevant
to cognitive processes (online approach), which allows conclusions about the region’s causal
relevance, and (2) to induce neural plasticity in the targeted area for an extended period (offline
approach), which allows the analysis of subsequent effects on neural activity (e.g., via fMRI or
EEG) and behavior. As a therapeutic tool, the offline application of rTMS is of greatest interest
since the TMS-induced changes in neuronal excitability give rise to neural reorganization
processes (Hartwigsen, 2015, 2018; Siebner et al., 2009). Importantly, it has been shown that
the effect of rTMS is not limited to the site of stimulation but spreads transsynaptically along
cortico-cortical and cortico-subcortical connections, impacting neuronal activity throughout
the targeted network (Hartwigsen & Siebner, 2013; Siebner et al., 2022; Siebner & Rothwell,
2003). Moreover, to generate longer-lasting stimulation effects on cognition, the application
of patterned stimulation protocols, such as theta-burst stimulation (TBS Y.-Z. Huang et al.,
2005), has gained increasing attention. TBS delivers short, high-frequency stimulation bursts
at intervals which are applied intermittently (iTBS) or continuously (cTBS). ITBS is assumed
to facilitate cortical excitability via long-term potentiation and cTBS to inhibit excitability via
long-term depression in the cortex (Di Lazzaro et al., 2008; Y.-Z. Huang et al., 2005).

In the field of neurocognitive aging, the application of NIBS is especially relevant to improve
performance in cognitive functions affected by age and potentially boost gains in interventions
using cognitive training (for reviews, see Booth et al., 2022; Goldthorpe et al., 2020; Hsu et al.,
2015). However, so far, findings are mixed, with some studies reporting beneficial effects,
particularly in the domains of working, episodic, and associative memory (Antonenko et al.,
2019; Berryhill & Jones, 2012; Manenti et al., 2013), and some studies observing no additional
effect of NIBS on cognitive functions (e.g., Antonenko et al., 2022). Moreover, effect sizes
are often small and show little or no transfer to untrained tasks (Booth et al., 2022; Passow
et al., 2017). In the domain of semantic cognition, thus far, only a few studies explored the
application of tDCS to boost semantic word retrieval in healthy older adults (Holland et al.,
2011; Martin et al., 2017; Meinzer et al., 2013; Meinzer et al., 2014; Ross et al., 2011). Anodal
tDCS was applied over the left inferior frontal gyrus, primary motor cortex, inferior frontal
gyrus, and anterior temporal lobe, respectively, and led to improved and faster word retrieval
abilities relative to sham after a single stimulation session in all studies.

Notably, most of the reported studies in healthy aging used tDCS, which might be due
to its relatively easier, cheaper, and safer application compared with TMS (Gandiga et al.,
2006). Moreover, tDCS can be portable, which makes it an ideal tool for the development of
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treatments which can be administered at home. In contrast, TMS has the advantage that it is
more focal and may reach deeper cortical regions (Lu et al., 2007), making it more appropriate
for precise and less noisy stimulation. The focality of stimulation is especially relevant, when
NIBS and neuroimaging techniques are combined. Examining the effects of stimulation on
the neural level is of high importance considering the immense variability of stimulation
approaches regarding stimulation site, duration, and intensity. Furthermore, neuroimaging
results can help interpreting behavioral effects and might even be observed in the absence
of a stimulation-induced behavioral change (Abellaneda-Pérez et al., 2022). For example, it
has been shown that neural markers of age-related cognitive decline are detectable at earlier
stages than subsequent behavioral changes (Burggren & Brown, 2014).

From the studies using tDCS to boost semantic word retrieval in older adults, only a few
assessed the effect of stimulation at the neural level. Improved performance was associated
with reduced activation at the stimulation site (Holland et al., 2011; Meinzer et al., 2013) and in
regions that have been shown to upregulate for higher task demands in older adults (Meinzer
et al., 2013). Stimulation-induced changes were also observed for functional connectivity,
where increased connectivity between task-relevant regions of interest in the prefrontal cortex
was observed (Holland et al., 2016) but also reduced resting-state connectivity between frontal
and temporal regions indicating a more youth-like connectivity pattern after anodal tDCS
(Meinzer et al., 2013). Moreover, in a different study, anodal tDCS over the left primary motor
cortex led to an observable shift in laterality, with more left-lateralized language processing
after active relative to sham stimulation in older adults. In summary, existing research suggests
an effect of NIBS in the domain of semantic cognition not only on the behavioral but also
neural level, with first evidence indicating stimulation-induced changes towards youth-like
activation patterns.

So far, no study explored the potential of rTMS to modulate age-related changes in semantic
cognition on the behavioral and neural level. One reason for this gap might be the relative
preservation of semantic memory in healthy aging compared with other cognitive functions, as
outlined in chapter 1.1, and thus a research bias toward the enhancement of declining functions
with age, such as working and episodic memory. However, complaints about problems with
access and retrieval of information from semantic memory prevail in healthy aging, and
a recent investigation demonstrated that a more fine-grained distinction of the cognitive
processes involved in semantic cognition might elucidate which components are affected by
age (Hoffman, 2018). Specifically, Hoffman (2018) showed that semantic representation and
retrieval processes remain intact with age but semantic control processes involved in selection
and inhibition mechanisms, which are strongly correlated with executive functions, decline
in older adults. Transferring this finding to the neural level would thus indicate that the
stimulation of regions associated with semantic control might be most promising.
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1.5 Research Questions

So far, age-related changes to the functional network architecture in semantic cognition are
poorly understood. The studies presented in this thesis addressed three key issues:

(1) the age-dependent contribution of task-relevant, domain-general networks to semantic
cognition,

(2) the age-related reorganization of the whole-brain functional network architecture during
semantic processing, and

(3) the potential of stimulating a hub of the MDN via NIBS to facilitate semantic retrieval in
healthy older adults as revealed through behavioral performance and neuroimaging.

First, it is unclear how domain-general and domain-specific networks interact during
semantic cognition and how this interaction might change with age. There is evidence that
functional coupling between usually anticorrelated networks increases for tasks that require
cognitive control even in young adults (Shine et al., 2016) but also in older adults at rest (Krieger-
Redwood et al., 2019) and during self-directed task processing, such as creative thinking (Adnan
et al., 2019) and autobiographical memory (Spreng et al., 2016). To date, the change in network
coupling has not been addressed during semantic processing in healthy aging. This question is
especially relevant to the understanding of functional brain aging since the recently proposed
DECHA framework might predict a shift towards semanticization in older adults with greater
contributions of networks associated with semantic representation (Spreng & Turner, 2019;
Turner & Spreng, 2015). Crucially, exploring this issue through task-based fMRI offers the
opportunity to relate age-related network reorganization processes to behavioral performance
and thus to inform current accounts regarding the compensatory potential of an increase in
default-executive coupling with age.

To this end, study 1 of the present thesis investigated the interaction of domain-specific
and domain-general networks during semantic processing in healthy young and older adults.
We used an overt semantic word retrieval task and a low-level verbal control task to assess
age-related differences in functional brain activation and connectivity. One major finding of
this study was the strong contribution of the domain-general MDN and DMN to semantic word
retrieval in both age groups. However, the functional coupling within and between these two
networks had different effects on the behavioral performance of each age group, with young
adults benefiting from increased coupling in the form of better and more efficient performance.

According to the DECHA framework, older adults may profit from an increased coupling of
executive and default resources when they can rely on their semantic knowledge during task
processing. While my first study did not indicate such an age-related shift in network coupling
during semantic word retrieval, this might have been caused by methodological choices such
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as the focus on network nodes from the young adults during semantic processing. Hence,
study 2 undertook a whole-brain approach to explore age-related reorganization processes of
functional networks. We combined independent component analysis (ICA) with graph theory
to investigate changes to the functional network architecture with age, and related these
measures to participants’ in-scanner task performance and abilities of fluid and crystallized
intelligence. Linking preserved performance in older adults with their reorganized network
structure, enabled us to draw inferences about the compensatory potential of such network
changes. One key finding of this study was the greater integration of task-relevant networks
in older adults, facilitated by an increased amount of connector hubs in frontal and parietal
regions. Notably, the pre-supplementary motor area (pre-SMA) emerged as a hub region, which
aligned with its pronounced contribution to semantic word retrieval as revealed in study 1.

Thus, building upon these findings, study 3 explored the potential of enhancing the pre-
SMA, a hub of domain-general but also domain-specific semantic control, via facilitatory offline
stimulation in a crossover study design in healthy middle-aged to older adults. We assessed
the effect of stimulation on behavioral performance, task-based activation, and functional
connectivity in a subsequent fMRI experiment. Relating stimulation-induced changes on the
neural level with behavior allowed us to investigate the role of the pre-SMA in semantic control
and its role in semantic processing in the aging brain.
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2 Age-Dependent Contribution of
Domain-General Networks to Semantic
Cognition

Study 1

The following study explored the contribution of domain-general networks to a semantic word
retrieval task in healthy young and older adults. It has been published in Cerebral Cortex.
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Abstract

Aging is characterized by a decline of cognitive control. In semantic cognition, this leads to the paradox that older adults
usually show poorer task performance than young adults despite their greater semantic knowledge. So far, the underlying
neural changes of these behavioral differences are poorly understood. In the current neuroimaging study, we investigated
the interaction of domain-specific and domain-general networks during verbal semantic fluency in young and older adults.
Across age groups, task processing was characterized by a strong positive integration within the multiple-demand as well
as between the multiple-demand and the default mode network during semantic fluency. However, the behavioral
relevance of strengthened connectivity differed between groups: While within-network functional connectivity in both
networks predicted greater efficiency in semantic fluency in young adults, it was associated with slower performance in
older adults. Moreover, only young adults profited from connectivity between networks for their semantic memory
performance. Our results suggest that the functional coupling of usually anticorrelated networks is critical for successful
task processing, independent of age, when access to semantic memory is required. Furthermore, our findings lend novel
support to the notion of reduced efficiency in the aging brain due to neural dedifferentiation in semantic cognition.

Key words: aging, connectivity, default mode network, language production, multiple-demand network

Introduction
Semantic cognition is a fundamental human ability that is
central to communication across the life span. Key facets of
semantic cognition refer to our knowledge of the world and
the meaning of words and sentences. With respect to cognitive
changes across the adult life span, cognitive control processes—
also referred to as fluid intelligence—are well established to
steadily decline with increasing age (Hedden and Gabrieli
2004), whereas semantic knowledge (so-called crystallized
intelligence) has been shown to remain stable or might even
increase with age due to the ongoing accrual of knowledge and
experience across the life course (Verhaegen et al. 2003). In the
domain of semantic cognition, the impact of aging thus seems
to depend on both the specific cognitive demand of a task and
the individual semantic knowledge.

At the neural level, cognitive changes with age are mirrored
by large-scale reorganization processes at the structural and
functional levels (Grady 2012; Morcom and Johnson 2015).
Task-related performance changes in older adults have been
associated with a pattern of dedifferentiation of neural activity
(Li et al. 2001; Park et al. 2004) which is reflected by an
under-recruitment of domain-specific regions (Lövdén et al.
2010) and reduced task-specific lateralization (Cabeza 2002).
Dedifferentiation is further characterized by an increased
recruitment of areas in the domain-general multiple-demand
network (MDN; Lövdén et al. 2010) and a reduced deactivation
of regions in the default mode network (DMN; Andrews-Hanna
et al. 2007; Persson et al. 2007; Damoiseaux et al. 2008). A recent
meta-analysis that investigated age-related effects on the neural
substrates of semantic cognition confirmed the upregulation
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of the MDN in older adults for a variety of semantic tasks
(Hoffman and Morcom 2018).

In addition to local changes in task-related activity, alter-
ations in the functional connectivity of large-scale neural
networks have become a hallmark of brain aging (Li et al. 2015;
Spreng et al. 2016; Damoiseaux 2017). A common observation is
that functional network segregation declines with age, which
is evident in the form of decreased within- and increased
between-network functional connectivity (Chan et al. 2014;
Geerligs et al. 2015; Spreng et al. 2016). These changes have
been interpreted as dedifferentiation of network interactions,
paralleling local task-related neural changes (Spreng and Turner
2019). However, the majority of studies investigated these
changes at rest, and it is thus less clear how aging affects task-
related functional connectivity and how this is associated with
behavior.

The recently proposed default-executive coupling hypoth-
esis of aging (DECHA; Turner and Spreng 2015; Spreng and
Turner 2019) suggests that the observed activity increase in MDN
regions and the reduced deactivation of the DMN co-occur and
are functionally coupled in older adults. This shift in network
coupling is based on the accrual of semantic knowledge and
the parallel decline of cognitive control abilities. Older adults
thus rely more strongly on their preserved semantic knowl-
edge, which is reflected by a reduced deactivation of DMN
regions compared with young adults. According to this hypoth-
esis, context and cognitive demand of a task determine if this
increased default-executive coupling in older adults is beneficial
or maladaptive. On this basis, the framework predicts stable
performance in older adults for tasks that rely on crystallized
intelligence in the form of intrinsic prior knowledge and that
require little cognitive control, whereas externally directed cog-
nitive tasks result in poorer performance in older adults due to
their dependence on control resources.

So far, the integration of domain-general networks in seman-
tic word retrieval in older adulthood is poorly understood. In
this context, semantic fluency tasks, which require participants
to generate words that belong to a specific category within a
given time, provide a unique opportunity since they require
an interaction of verbal semantic and general cognitive control
processes (Whiteside et al. 2016; Schmidt et al. 2017; Gordon
et al. 2018). Semantic fluency tasks test a natural and important
communicative ability as they rely on accessing related concepts
to retrieve words. Furthermore, semantic fluency is of high
ecological validity, for example, when writing a shopping list
(Shao 2014), and is frequently implemented as a measure of
language and neuropsychological abilities in healthy as well as
clinical populations (Schmidt et al. 2017). The impact of aging
on semantic fluency is especially interesting since its strong
link to semantic memory would predict preserved performance
for older adults. Yet, the opposite pattern is usually observed,
suggesting a high load on cognitive control processes for this
task (e.g., Troyer et al. 1997; Kavé and Knafo-Noam 2015; Gor-
don et al. 2018). Most studies that implemented semantic flu-
ency tasks in neuroimaging experiments reported age-related
changes within domain-specific networks (Marsolais et al. 2014;
Baciu et al. 2016) or predefined regions of interest (ROIs), mainly
in the prefrontal cortex (Meinzer et al. 2009; Meinzer, Flaisch,
et al. 2012; Meinzer, Seeds, et al. 2012). However, based on the
outlined changes in semantic and cognitive control abilities,
older adults could show a shift in network coupling with a
stronger engagement of domain-general networks, which might
be additionally modulated by task demand.

The aim of the present study was to explore and compare
the contribution of domain-specific and domain-general net-
works to a semantic language production task in healthy young
and older adults. We implemented a functional magnetic res-
onance imaging (fMRI) study with a paced overt semantic flu-
ency task, which included an explicit modulation of task dif-
ficulty. A counting task was used as a low-level verbal control
task. First, we were interested in delineating the network for
semantic fluency and its interaction with task demand. Second,
we asked whether age modulates both activation patterns and
behavioral performance. Finally, we were interested in task-
related functional interactions between domain-specific and
domain-general networks. To this end, we combined univari-
ate whole-brain analyses with generalized psycho-physiological
interaction (gPPI) analyses. We applied traditional gPPI analyses
to explore the functional coupling of the strongest activation
peaks for semantic fluency. This allowed us to investigate the
age-related contribution of domain-general networks to lan-
guage processing. Furthermore, we used modified gPPI anal-
yses to examine functional connectivity within and between
regions of domain-general networks. We were interested in age-
related effects on functional connectivity patterns and how
within- and between-network functional connectivity relate to
behavioral performance for both age groups. We expected a
language-specific, left-lateralized network for semantic fluency.
We further hypothesized that increased task demand (reflected
by the contrast of semantic fluency with counting as well as
by the modulation of difficulty within the semantic fluency
task) would affect task performance and should be accompa-
nied by an increased recruitment of domain-general systems.
With respect to task-related functional connectivity, we rea-
soned that older adults should demonstrate a stronger involve-
ment of the DMN for the semantic fluency task based on their
increased semantic knowledge. Moreover, a higher task load
associated with general cognitive decline might further result
in a stronger recruitment of the MDN in older adults. However,
in line with neurocognitive theories of aging, the increased
recruitment of domain-general systems might be associated
with reduced specificity and efficiency; thus, overall leading to
poorer performance in the older adults.

Materials and Methods
Participants

Twenty-eight healthy older adults (mean age: 65.2 years, range:
60–69 years) and 30 healthy young adults (mean age: 27.6 years,
range: 21–34 years) completed our study. The data of three
additional participants in the older group as well as single
runs of six participants were excluded due to excessive head
movement during fMRI (>1 voxel size). Groups were matched
for gender. Participants in the younger group had significantly
more years of education (t(55.86) = 5.2, P < 0.001). All participants
were native German speakers and right-handed according to
the Edinburgh Handedness Inventory (Oldfield 1971). They had
normal hearing, normal or corrected-to-normal vision, and no
history of neurological or psychiatric conditions or contraindi-
cation to magnetic resonance (MR) scanning. Older adults were
additionally screened for cognitive impairments using the Mini-
Mental State Examination (Folstein et al. 1975; all ≥26/30 points)
and for depression with the Beck Depression Inventory (Beck
et al. 1996; all ≤14/points). The study was approved by the local
ethics committee of the University of Leipzig and was conducted
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Table 1 Demographic and neuropsychological characteristics of participants

Young adults (n = 30) Older adults (n = 28)

Demographics
Age (years) 27.6 (4.4) 65.2 (2.8)
Gender (F:M) 16:14 14:14
Education (years) 18.7 (2.6) 15.2 (2.5)∗
Beck Depression Inventory (cutoff 18 points) — 4.7 (4.1)

Neuropsychological
Spot-the-word test (max. 40) 29.1 (3.2) 31.5 (2.5)∗
Semantic fluency (sum surnames, hobbies) 51.2 (8.4) 40.7 (6.7)∗
Reading span test (max. 6) 3.5 (1) 2.9 (0.7)∗
Digit Symbol Substitution Test (max. 90 in 90 s) 72.1 (11.4) 50.2 (10.4)∗
Trail Making Test A (time in s) 17.3 (5.8) 25.4 (6.4)∗
Trail Making Test B (time in s) 36.1 (11.9) 61.8 (29.4)∗
Mini-Mental State Examination (max. 30 points) — 28.36 (1.2)

Note: Mean values of raw scores with SDs.
∗Significant differences between age groups at P < 0.01.

in accordance with the Declaration of Helsinki. Participants gave
written informed consent prior to the experiment. They received
10 Euro per hour for their participation.

Neuropsychological Assessment

A battery of neuropsychological tests was administered to all
participants to assess cognitive functioning. Verbal knowledge
and executive language functions were measured with the
German version of the spot-the-word test (Wortschatztest;
Schmidt and Metzler 1992; Baddeley et al. 1993), a German
version of the reading span test (Daneman and Carpenter 1980),
and the semantic subtest of a verbal fluency test (Regensburger
Wortflüssigkeitstest; Aschenbrenner et al. 2000). The latter
comprised two 1-min trials of semantic categories (surnames
and hobbies) that were not part of the fMRI task. Additionally,
executive functions were assessed with the Digit Symbol
Substitution Test (Wechsler 1944) and the Trail Making Test A/B
(Reitan 1958). Group comparisons showed that older partici-
pants only performed better than the younger group on the
spot-the-word test (Table 1; Supplementary Fig. S1), which is
considered to be a measure of lexical semantic knowledge and
vocabulary. Consistent with our results, it has been shown
to be robust to aging and cognitive decline (Baddeley et al.
1993; Law and O’Carroll 1998; Cohen-Shikora and Balota 2016).
Our results confirm the maintenance of semantic memory
across age (Grady 2012) and an increase in size of vocabulary
with age (Verhaegen et al. 2003). All other tests showed better
performance for younger participants, which is in line with
the assumption of a general decline in executive functions
like working memory and processing speed with age (e.g.,
Balota et al. 2000; Zacks et al. 2000). However, when considering
age-corrected norms, the older participants performed within
normal ranges on all neuropsychological tests.

Experimental Design

All participants completed one fMRI session that was divided
into two runs. Tasks consisted of a paced overt semantic flu-
ency task and a control task of paced counting, which were
implemented in a block design in the scanner. We chose a paced
design for our tasks since it has been shown to be less sensitive

to motion artifacts and to yield robust brain activation patterns
(Basho et al. 2007). Task blocks were 43 s long and were separated
by rest blocks of 16 s (Fig. 1A). Each block started with a 2-s visual
word cue indicating whether participants were expected to gen-
erate category exemplars or count forward (1–9) or backward
(9–1). This was followed by nine consecutive trials of the same
category or counting task, respectively. Trials within one block
were separated by inter-stimulus intervals of 2–4 s. Participants
were instructed to generate one exemplar for a category or one
number per trial, which was indicated through a green cross on
the screen, and to pause when the cross turned red (Fig. 1B,C).
They were told not to repeat items and to say “next” if they could
not think of an exemplar for the respective category. Each run
contained 10 semantic fluency blocks, which were divided into
easy and difficult categories, and 10 counting blocks, consisting
of forward and backward counting, thus resulting in a total
duration of 19.4 min per run. The order of blocks was coun-
terbalanced and pseudorandomized across participants. Before
the fMRI experiment, participants received instructions and
practiced the task with a separate set of categories outside the
scanner. Stimuli were presented using the software Presentation
(Neurobehavioral Systems; version 18.0). Answers were recorded
via a FOMRI III microphone (Optoacoustics).

Stimuli

Stimuli consisted of 20 semantic categories which were divided
into 10 easy and 10 difficult categories. Difficulty was assessed
in a separate pilot study with 24 young adults (12 males, mean
age: 26 years, range: 21–32 years) and 24 older adults (10 males,
mean age: 65 years, range: 60–69 years). Participants were
recruited and screened using similar criteria as in the fMRI
study. They generated as many exemplars as possible during
1-min trials for 30 semantic categories which were taken from
German category-production norm studies (Mannhaupt 1983;
Glauer et al. 2007). Responses were recorded and subsequently
transcribed and analyzed. Based on the total number of correct
exemplars produced for each category, the 10 categories with
the largest number of produced items (colors, body parts,
clothing, types of sport, animals, car parts, professions, trees,
food, and musical instruments) and the 10 categories with the
fewest items (flowers, insects, metals, kitchen devices, tools,
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Figure 1. Experimental design. (A) fMRI experiment consisting of alternating
blocks of a semantic fluency and a counting task separated by 16-s rest periods.
(B) and (C) demonstrate the implementation of the paced design in both tasks.
Procedures were identical for both tasks. Participants were instructed to produce

one exemplar for a category or to say one number per green cross (here marked
in dark grey), respectively, and to pause when the cross turned red (here marked
in light grey). Each block contained nine trials which were separated by jittered
inter-stimulus intervals.

gardening tools, fishes, cosmetics, toys, and sweets) across both
age groups were chosen for the easy and difficult conditions of
the semantic fluency task in the fMRI experiment, respectively.
Easy (M = 18.08, standard deviation [SD] = 2.51) and difficult
categories (M = 10.64, SD = 1.39) differed significantly in the
mean number of generated exemplars (t(29.66) = 11.00, P < 0.001)
during piloting. To ensure that there was no difference between
age groups for the difficulty manipulation, we calculated a linear
model with difficulty and age as predicting variables. Results
revealed a significant effect of difficulty (F = 139.67, P < 0.001)
but not of age group (F = 2.46, P = 0.13).

Data Acquisition and Preprocessing

MR images were collected at a 3-Tesla Prisma Scanner (Siemens)
with a 32-channel head coil. For the acquisition of fMRI data,
a dual gradient echo-planar imaging multiband sequence
(Feinberg et al. 2010) was used for optimal blood oxygen level–
dependent (BOLD) sensitivity across the whole brain (Poser
et al. 2006; Halai et al. 2014). The following scanning parameters
were applied: time repetition (TR) = 2000 ms; time echo (TE) = 12,
33 ms; flip angle = 90◦; voxel size = 2.5 × 2.5 × 2.5 mm with an
interslice gap of 0.25 mm; FOV = 204 mm; multiband acceleration
factor = 2. To increase coverage of anterior temporal lobe
(ATL) regions, slices were tilted by 10◦ of the AC-PC line. Six
hundred and sixteen images consisting of 60 axial slices in
interleaved order covering the whole brain were continuously
acquired per run. Additionally, field maps were obtained for
later distortion correction (TR = 8000 ms; TE = 50 ms). This study
analyzed the data from echo 2 (TE = 33 ms) since preprocessing
was performed using the software fMRIPrep (Esteban et al.

2019), which currently does not support the combination of
images acquired at different echo times. We chose to use
results from preprocessing with fMRIPrep since this pipeline
provides state-of-the-art data processing while allowing for
full transparency and reproducibility of the applied methods
and a comprehensive quality assessment of each processing
step, which facilitates the identification of potential outliers.
We also double-checked results from preprocessing with
fMRIPrep with a conventional SPM preprocessing pipeline
of both echoes. The comparison of both pipelines did not
reveal big differences in analysis results. A high-resolution,
T1-weighted 3D volume was obtained from our in-house
database (if it was not older than 2 years) or was collected
after the functional scans using an MPRAGE sequence (176
slices in sagittal orientation; TR = 2300 ms; TE = 2.98 ms; flip
angle = 9◦; voxel size = 1 × 1 × 1 mm; no slice gap; FOV = 256 mm).
Moreover, we investigated a potential resampling bias through
the Montreal Neurological Institute (MNI) template. To this end,
we created a study-specific template based on the structural
scans of our participants. We used the Computational Anatomy
Toolbox (CAT12) in SPM12 to segment the structural images.
Compared with the segmentation process included in SPM12,
CAT12 provides a more fine-grained, advanced segmentation
that has been shown to be robust to noise and to produce
reliable results (Tavares et al. 2020). We then applied the
Diffeomorphic Anatomical Registration Through Exponentiated
Lie Algebra (DARTEL; Ashburner 2007) toolbox to create an
anatomical study-specific template (young and older adults
together; for a more detailed description of the procedure see
Michael et al. 2016). The coregistered functional images were
normalized to this study-specific template in MNI space and
were subsequently smoothed with a 5-mm full-width half-
maximum (FWHM) Gaussian kernel. First- and second-level
statistics were calculated analogously to the analyses using
the data preprocessed with fMRIPrep. The results did not reveal
major differences between the two resampling procedures for
univariate within-group comparisons. All significant clusters
that were found with the study-specific template approach were
also found with the results based on the fMRIPrep preprocessing
pipeline (resampling to the MNI template). Furthermore, the
latter produced more reliable activation in the ATL in both age
groups (for comparison, see unthresholded statistical maps at
https://neurovault.org/collections/9072/).

Preprocessing was performed using fMRIPprep 1.2.6 (Esteban
et al. 2019), which is based on Nipype 1.1.7 (Gorgolewski et al.
2017). In short, within the pipeline, anatomical images were
processed using the software ANTs (Tustison et al. 2010) for
bias field correction, skull stripping, coregistration, and normal-
ization to the skull-stripped ICBM 152 Nonlinear Asymmetrical
template version 2009c (Fonov et al. 2009). FreeSurfer (Dale et al.
1999) was used for brain surface reconstruction and FSL (Jenk-
inson et al. 2012) was used for segmentation. Functional data
of each run were skull-stripped, distortion-corrected, slice-time-
corrected, coregistered to the corresponding T1 weighted vol-
ume, and resampled to MNI152NLin2009cAsym standard space.
Head motion parameters with respect to the BOLD reference
(transformation matrices and six corresponding rotation and
translation parameters) were estimated before any spatiotem-
poral filtering using FSL. For more details of the pipeline, see
the section corresponding to workflows in fMRIPrep’s docu-
mentation (https://fmriprep.org/en/1.2.6/workflows.html). After
preprocessing, 29 volumes from the beginning of each run were
discarded since they were collected for the combination of the
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short and long TE images via an estimation of the temporal
signal-to-noise ratio (Poser et al. 2006). This yielded 587 normal-
ized images per run, which were included in further analyses.
The images were smoothed with a 5-mm3 FWHM Gaussian
kernel using Statistical Parametrical Mapping software (SPM12;
Wellcome Trust Centre for Neuroimaging), implemented in MAT-
LAB (version 9.3/2017b).

Data Analysis

Behavioral Data
Response recordings during the semantic fluency task were
cleaned from scanner noise using Audacity (version 2.3.2,
https://www.audacityteam.org/) and verbal answers and onset
times were transcribed by three independent raters. Repetitions
of words within a category was counted as incorrect, incomplete
answers and null reactions were marked separately, and full
categories that had been missed by participants (in total, 10
categories) were excluded from the analyses. Statistical analyses
were performed with R via RStudio (R Core Team 2018) and
the packages lme4 (Bates et al. 2015) for mixed models and
ggplot2 (Wickham 2016) for visualizations. We used sum coding
(ANOVA-style encoding) for all categorical predictors. In this
way, the intercept represents the mean across conditions (grand
mean), and the model coefficients represent the difference
between the grand mean and the mean of the respective
condition. For the analysis of accuracy, a generalized linear
mixed-effects logistic regression was used accounting for the
binary nature of the response variable (eq. 1). For response time,
a linear mixed-effects model was fit to the log-transformed
data (eq. 2). As fixed effects, we entered age, condition, and
difficulty into the models. As random effects, we had intercepts
for participants and categories. Further, education was entered
as covariate of no interest to account for the difference in years
of education between age groups. P values were obtained by
likelihood ratio tests of the full model with the effect in question
against the model without the effect in question. Post hoc
comparisons were applied using the package emmeans (Lenth
2020).

Accuracy = β0 + β1Age + β2Condition + β3Difficulty

+β4Education + β5Age × Condition + β6Age × Difficulty (1)

+ (
1|Subject

) + (
1|Category

) + ε,

log
(
Response time

) = β0 + β1Age + β2Condition

+β3Difficulty + β4Education + β5Age × Condition (2)

+β6Age × Difficulty + (
1|Subject

) + (
1|Category

) + ε.

fMRI Data
fMRI data were modeled in SPM using the two-level approach.
On the first level, a general linear model (GLM) was implemented
for each participant. The GLM included regressors for the task
blocks of the four experimental conditions (easy categories, dif-
ficult categories, counting forward, and counting backward) and
nuisance regressors consisting of the six motion parameters and
individual regressors for strong volume-to-volume movement
as indicated by values of framewise displacement >0.9 (Siegel
et al. 2014). A two-sample t-test indicated that there was no

significant difference between older adults (M = 15.67, SD = 20.04)
and young adults (M = 7.5, SD = 8.35) with respect to the number
of regressed volumes (t(28.76) = 1.66, P = 0.11). Additionally, an
individual regressor of no interest was included in the design
matrix if a participant had missed a whole task block during
the experiment (n = 10). Before model estimation, a high-pass
filter with a cutoff at 128 s was applied to the data. Statistical
parametric maps were generated by estimating the contrast
for each condition against rest as well as the direct contrasts
between conditions. At the second level, contrast images were
entered into a random effects model. For each participant, an
averaged mean-centered value of response time was entered
as covariate of no interest in the design matrix. For within-
group comparisons, one-sample t-tests were calculated for the
main task-related contrasts, semantic fluency > counting and
counting > semantic fluency. To evaluate the modulation of
task difficulty within the semantic fluency task, the contrasts,
easy > difficult categories and difficult > easy categories, were
computed.

To investigate the effect of age on task-related activity, we
conducted between-group comparisons for the interaction con-
trasts cAge × Semantic fluency and cAge × Condition. Two-sample t-tests
were carried out using the individual contrast images from the
first-level analysis. To ensure that potential areas were indeed
active in the respective group, all interactions were character-
ized by inclusively masking each contrast with significant voxels
of the minuend (at P < 0.001, uncorr., cf. Noppeney et al. 2006,
Meinzer, Seeds, et al. 2012). A gray matter mask which restricted
statistical tests to voxels with a gray matter probability >0.3
(SPM12 tissue probability map) was applied to all second-level
analyses. All results except for the interaction contrasts were
corrected for multiple comparisons applying a peak level thresh-
old at P < 0.05 with the family-wise error (FWE) method and a
cluster-extent threshold of 20 voxels. Interaction results were
thresholded at P < 0.05 at the cluster level with FWE correction
and a voxel-wise threshold at P < 0.001. Anatomical locations
were identified with the SPM Anatomy Toolbox (Eickhoff et al.
2005, version 2.2c) and the Harvard-Oxford cortical structural
atlases distributed with FSL (https://fsl.fmrib.ox.ac.uk). Brain
results were rendered by means of BrainNet Viewer (Xia et al.
2013, version 1.7) and MRIcroGL (https://www.mccauslandcente
r.sc.edu/mricrogl/, version 1.2.20200331).

Since the strongest activation peaks for both tasks were
found in the domain-general systems, MDN and DMN, we
decided to examine the amount of activation for each condition
and age group. We applied binary masks of both networks
to analyses within the group of young adults to identify
clusters that fell within the respective network. By basing
our analysis on activity in the young adults, we ensured that
more complex analyses were based on the same number
of regions in both age groups. Further, this allowed us to
investigate age-related differences in these regions knowing
that they are relevant for task processing in young adults. For
comparison, we have added an overview of the age-specific
ROIs to the supplementary analyses (Supplementary Table
S1). The MDN mask was based on the anatomical parcels of
the MD system defined by Fedorenko et al. (2013), available
at https://evlab.mit.edu/funcloc/. We decided to use the MDN
parcellation since it has been shown that regions of different
networks that are commonly disentangled in resting-state
network parcellations (e.g., the fronto-parietal network, cingulo-
opercular network, and dorsal attention network) together
form a core set of MD regions for goal-directed cognitive

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab252/6360348 by M

PI C
ognitive and Brain Science user on 03 Septem

ber 2021



6 Cerebral Cortex, 2021, Vol. 00, No. 00

processing (Camilleri et al. 2018; Assem et al. 2020). For the
DMN, a mask was created from the seven-network parcellation
by Schaefer et al. (2018). For the contrast, semantic fluency
> counting, peak global and local maxima were found in the
MDN, whereas the reverse contrast identified clusters that are
typically associated with the DMN. Due to the small number
(n = 3) of peak clusters for the contrast, counting > semantic
fluency with FWE correction at peak level, we decided to apply a
more lenient threshold (FWE-corrected at cluster level, P < 0.001
at peak level) for the identification of regions associated with
the DMN. This allowed us to extract a similar number of peak
maxima for the MDN and the DMN and provided a much more
representative picture of the DMN as a whole. In total, we
identified 14 peak maxima in the MDN and 17 peak maxima
in the DMN, respectively (Table 2). ROIs for these maxima were
created using the MarsBar toolbox (Brett et al. 2002; version
0.44). To this end, identified clusters were extracted from
contrast images, spheres of 5 mm from each maxima coordinate
were created, and, in a last step, both images were combined.
Subsequently, we extracted parameter estimates for these ROIs
from the individual contrast images for semantic fluency > rest
and counting > rest. The data were then entered into a linear
mixed-effects model with network, age, and condition as fixed
effects. A random intercept was included for participants (eq.
3). Categorical predictors were sum-coded. Significance values
were obtained through likelihood ratio tests using the package
lme4 (Bates et al. 2015). Post hoc comparisons were applied using
the package emmeans (Lenth 2020).

Beta weight = β0 + β1Network + β2Age + β3Condition

+β4Network × Age + β5Network × Condition + β6Age × (3)

Condition + (
1|Subject

) + ε.

Functional Connectivity Analyses
We conducted psychophysiological interaction (PPI) analyses
using the gPPI toolbox for SPM12 (McLaren et al. 2012) to investi-
gate the task-related modulation of functional connectivity, for
semantic fluency. Furthermore, we applied a modified version of
gPPI methods to examine the functional connections between
individual ROIs during the semantic fluency task (Pongpipat
et al. 2020). Seed regions were defined for all previously iden-
tified global maxima that were located within the MDN and the
DMN (Table 2). For each participant, ROIs were created by search-
ing for the individual peaks within a bounding region of 10 mm
relative to the group peak and by drawing a sphere mask (5 mm
in diameter) around the individual peak of a given contrast at
a threshold of P < 0.01. To ensure that all participants had gray
matter coverage of the analyzed ROIs (n = 31), we resampled each
participant’s gray matter mask to the ROIs and calculated the
amount of voxels (2 × 2 × 2 mm) within the mask for each
participant and ROI. We found that all participants had voxels
within the gray matter mask of each ROI.

Regression models were set up for each ROI in each par-
ticipant, containing the deconvolved time series of the first
eigenvariate of the BOLD signal from the respective ROI as the
physiological variable, the four task conditions convolved with
the HRF as the psychological variable, and the interaction of both
variables as the PPI term. Subsequently, first-level GLMs were
calculated. For the gPPI proper methods, contrast images were
then entered into a random effects model for group analyses
in SPM. We restricted this analysis to the strongest peaks of

both contrasts (semantic fluency > counting and counting >

semantic fluency) that fell within the MDN and DMN, respec-
tively. This included the left pre-supplementary motor area
(pre-SMA), bilateral insulae, the right temporal pole, and the
right precuneus. Our main contrast of interest semantic fluency
> counting was examined in within-group as well as between-
group comparisons by conducting one-sample t-tests and a two-
sample t-test, respectively. Multiple comparison correction was
performed with the FWE method at P < 0.05 at peak level and
a cluster-extent value of 20 voxels. A gray matter mask was
applied to all group analyses as described for the task-based
fMRI data analysis.

For the modified gPPI, we used the individual first-level GLMs
to retrieve parameter estimates (mean regression coefficients).
Estimates were extracted for the PPI variable semantic fluency
> counting for each seed-to-target ROI (1 regression coefficient
[PPI] ∗ 31 seed ROIs ∗ 30 target ROIs = 930 parameter estimates
per participant). Subsequent group analyses were performed
in RStudio (R Core Team 2018) with the package lme4 (Bates
et al. 2015) and were visualized using the ggplot2 (Wickham
2016) and the ggeffects (Lüdecke 2018) packages. Categorical
predictors were sum-coded. We were interested in the func-
tional connectivity within and between MDN and DMN regions
for each age group. To this end, we calculated intercept-only
GLMs where each parameter estimate of each seed and target
combination was entered into the model except when the seed
and target were identical (eq. 4). The α-level (type I error) for
post hoc comparisons was adjusted using the “Meff” correction
(Derringer 2018). This method estimates the effective number
of tests (Meff) from the correlations among tested variables and
thereby allows for adjusting statistical significance thresholds
for multiple comparisons without assuming independence of
all tests (Derringer 2018). The Meff value for MDN and MDN
variables was calculated to be 27.5. By dividing this value by
the overall α of 0.05, we obtained a Meff-corrected α of 0.0018.
For subsequent analyses, the individual parameter estimates
of each seed-to-target combination were averaged to create
one value per participant for within-MDN, within-DMN, and
between-network functional connectivity (three parameter esti-
mates per participant). To test for an effect of age group on func-
tional connectivity, the parameter estimates were then entered
into a GLM with age group as independent variable (eq. 5). We
used Meff correction to adjust for multiple comparisons. A Meff
value of 2.49 yielded a Meff-corrected α of 0.02. To ensure that
our functional connectivity results were not confounded by head
motion, we calculated the root mean square (RMS) of realign-
ment parameters and correlated the average motion RMS per
participant with each functional connectivity measure. Results
did not reveal any significant correlation (see supplementary
material).

PPIcontrast = β0 + ε, (4)

PPIcontrast = β0 + β1Age + ε. (5)

Furthermore, we were interested in the effect of within-
and between-network functional connectivity on participants’
behavioral performance during the in-scanner semantic fluency
task. To this end, we calculated generalized mixed-effects logis-
tic regressions for the accuracy data (eq. 6) and linear mixed-
effects models for the log-transformed response time data
(eq. 7). The mean-centered PPInetwork variables and age group
as well as their interaction terms were entered as fixed effects.
Random intercepts were included for participants and semantic
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Age-Dependent Contribution of Domain-General Networks Martin et al. 7

Table 2 ROIs within domain-general networks

ROI Hemi x y z Region

MDN (from contrast, semantic fluency > counting)
1 L −31 25 2 Insula
2 L −4 25 40 preSMA
3 L −6 12 51 preSMA
4 R 13 27 29 dACC
5 L 4 20 40 dACC
6 L −4 2 29 dACC
7 R 31 27 2 Insula
8 R 38 20 −4 Insula
9 L −29 −65 51 SPL
10 L −29 −72 43 AG
11 L −34 −57 40 IPL
12 R 36 42 32 MFG
13 R 31 55 26 MFG
14 R 33 37 21 MFG

DMN (from contrast, counting > semantic fluency)
15 R 51 10 −31 TP
16 R 48 −10 −15 STG
17 R 8 −65 29 Precuneus
18 R 11 −52 35 Precuneus
19 L −9 −52 35 Precuneus
20 L −56 2 −20 MTG
21 L −54 10 −31 TP
22 L −6 27 −6 ACC
23 L −6 42 −4 ACC
24 L −54 −62 35 AG
25 L −41 −60 26 AG
26 L −46 −62 18 MTG
27 L −46 −75 35 AG
28 L −49 −67 43 AG
29 R 51 −57 26 AG
30 R 46 −65 48 AG
31 R 43 −72 35 AG

Note: Co-ordinates are given in MNI standard space. Abbreviations: Hemi, hemisphere; IPL, inferior parietal lobe; MFG, middle frontal gyrus; SPL, superior parietal lobe;
IntraCAL, Intracalcarine gyrus; TP, temporal pole; STG, superior temporal gyrus.

categories. Education was entered as covariate of no interest to
account for the difference in years of education between age
groups.

Accuracy = β0 + β1PPIMDN + β2PPIDMN + β3PPIMDN_DMN

+β4Age + β5Education + (β6PPIMDN (6)

+β7PPIDMN + β8PPIMDN_DMN) × Age

+(1|Subject) + (1|Category) + ε,

log(Response time) = β0 + β1PPIMDN + β2PPIDMN +
β3PPIMDN_DMN + β4Age + β5Education + (β6PPIMDN (7)

+β7PPIDMN + β8PPIMDN_DMN) × Age

+(1|Subject) + (1|Category) + ε.

Finally, to assess how the observed changes in network
properties were related to cognitive performance and semantic
memory in general, we performed correlation analyses with the
neuropsychological measures that had been tested outside of

the scanner. Due to the collinearity of some neuropsychological
tests, we first performed a factor analysis on the standardized
test scores using maximum likelihood estimation and varimax
rotation in RStudio with the package stats (R Core Team 2018).
Based on the hypothesis test (χ2 = 14.04, P = 0.081), two factors
with an eigenvalue >1 were chosen. For subsequent correlations
with functional connectivity measures, participant factor scores
extracted via regression methods were used.

Results
Behavioral Results

For response accuracy, we fitted a generalized linear mixed-
effects model for a binomial distribution. Likelihood ratio
tests indicated significant main effects of condition (χ2 = 21.59,
P < 0.001) and task difficulty (χ2 = 27.47, P < 0.001) but not of age
group (χ2 = 2.23, P = 0.14). Further, we detected a significant two-
way interaction between age and difficulty (χ2 = 9.76, P = 0.002)
and condition and difficulty (χ2 = 3.90, P = 0.048) as well as a
significant three-way interaction between age, condition, and
difficulty (χ2 = 9.28, P = 0.002). Post hoc tests applying Bonferroni-
corrected pairwise comparisons showed that both age groups
produced more correct items in the counting than in the
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Figure 2. Behavioral results for both age groups. Bar graphs overlaid with mean individual data points for accuracy and violin plots with box plots for mean response
times for (A) both tasks (semantic fluency and counting) and (B) difficulty levels (easy and difficult) within semantic fluency. Old, older adults; young, young adults.
∗P < 0.001 (Bonferroni-corrected for pairwise comparisons).

semantic fluency task (all P < 0.001) and more items for the
easy than the difficult semantic categories (all P < 0.001; Fig. 2A;
Supplementary Tables S2 and S3).

Response times were analyzed fitting a linear mixed-effects
model after log-transformation of the data. Likelihood ratio
tests revealed main effects of condition (χ2 = 21.37, P < 0.001) and
difficulty (χ2 = 20.98, P < 0.001) but not of age group (χ2 = 3.25,
P < 0.072). There was a significant interaction between age and
condition (χ2 = 69.46, P < 0.001). Post hoc tests using Bonferroni-
corrected pairwise comparisons showed that both age groups
responded significantly slower during the semantic fluency task
than the counting task and during the difficult than the easy
condition (all P < 0.001). Furthermore, young adults responded
generally faster than older adults during the semantic fluency
task (P < 0.001), independent of the level of difficulty, but not
during the counting task (P = 0.05; Fig. 2B; Supplementary Tables
S2 and S4).

fMRI Data

The Effect of Task within Groups
Both age groups showed similar activation patterns for the main
effects of our tasks compared with rest. For semantic fluency, we
found a left-lateralized fronto-temporo-parietal network with
additional clusters in right frontal and temporal areas, bilat-
eral caudate nuclei, and the cerebellum (Supplementary Fig. S2;
Supplementary Tables S5 and S6). The main effect of the less-
demanding task counting was evident in bilateral activation of
sensorimotor cortices and the cerebellum (Supplementary Fig.
S2; Supplementary Tables S7 and S8).

Within each age group, we were interested in the difference
in brain activation between the more demanding semantic flu-
ency task and the automatic speech counting task as well as in
the impact of the modulation of task difficulty in the seman-
tic fluency task. For the older adults, the contrast, semantic
fluency > counting, revealed a bilateral frontal network with
its strongest activation peaks in middle frontal gyri, bilateral
insulae extending into inferior frontal gyri, and midline struc-
tures comprising superior and medial frontal gyri. Activation in
the left hemisphere was further observed in the angular gyrus
and superior parietal lobe. Additional bilateral activation peaks
were found in the cerebellum, caudate nuclei, calcarine gyri,
and thalami (Fig. 3A; Supplementary Table S9). Younger adults
demonstrated a similar pattern of activation for the contrast,
semantic fluency > counting, albeit with generally larger clus-
ters in the frontal network (Fig. 3A; Supplementary Table S10).
Analyses further yielded separate clusters in the dorsal anterior
cingulate cortex (dACC) and the left superior temporal gyrus
for the younger group, which were not present in the older
participants. The reverse contrast (counting > semantic fluency)
revealed stronger activation in the right hemisphere for both
groups. Results showed clusters in the right temporal pole and
bilateral precunei (Fig. 3B; Supplementary Tables S11 and S12). In
the younger group, additional clusters were observed in bilateral
insulae and the middle temporal gyrus (MTG). When we applied
a more lenient threshold of P < 0.001 at peak level and FWE cor-
rection (P < 0.05) at cluster level, additional peaks were observed
in bilateral parietal lobes, including angular gyri and the anterior
cingulate cortex, in the young adults (Supplementary Table S13).

A linear mixed-effects model was fit for the mean value
of parameter estimates for all peak clusters in the MDN and
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Age-Dependent Contribution of Domain-General Networks Martin et al. 9

Figure 3. fMRI results from univariate analyses for each age group and parameter estimates for peak maxima identified within the MDN and the DMN. (A & B) Results
are FWE-corrected at P < 0.05 at peak level with a minimum cluster size = 20 voxel. Unthresholded statistical maps are available at https://neurovault.org/collectio
ns/9072/. (C) ∗ Significant effects are Bonferroni-corrected.

DMN (Table 2), respectively. Likelihood ratio tests indicated
significant effects for the explanatory variables network
(χ2 = 92.73, P < 0.001), age (χ2 = 11.03, P = 0.017), and condition
(χ2 = 23.04, P < 0.001). We further found a significant interaction
between network and condition (χ2 = 196.14, P < 0.001) and a

significant three-way interaction between network, age, and
condition (χ2 = 18.58, P < 0.001). Post hoc comparisons applying
Bonferroni correction revealed an effect of age for the DMN for
the contrast, semantic fluency > rest, with older adults showing
stronger activity in DM regions than young adults (t = 4.89,
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Figure 4. fMRI results for interaction effects. Cluster corrected at FWE P < 0.05 with a voxel-wise threshold at P < 0.001. (A) Restricted to voxels that showed a significant

effect of semantic fluency in older adults and (B) restricted to voxels that showed a significant effect of semantic fluency in young adults. Statistical maps are available
at https://neurovault.org/collections/9072/.

P < 0.001) as well as an effect of age for the MDN for the contrast,
counting > rest, with older adults showing stronger activity in
MD regions than young adults (t = 4.81, P < 0.001). Moreover, post
hoc tests showed that, in general, the MDN was activated for
the semantic fluency task across age groups, whereas the DMN
showed deactivation (t = 24.99, P < 0.001). For the counting task,
there was no difference in activation between both networks
(t = 0.81, P = 0.42; Fig. 3C; Supplementary Tables S14 and S15).

The Effect of Task Difficulty within Groups
To investigate the effect of task difficulty on functional brain
activation, we contrasted easy and difficult categories from the
semantic fluency task in both age groups. We found a significant
result only for young adults for the contrast, easy > difficult
categories, in the right middle frontal gyrus (Supplementary
Table S16).

Between-Group Comparisons
We were interested in the effect of age on task-related activa-
tions. For the interaction of both tasks compared with baseline,
we found a group difference only during the semantic fluency
task for older adults. We detected stronger activity in right
frontal regions, including superior frontal gyrus and inferior
frontal gyrus (IFG) as well as bilateral parietal lobes (Fig. 4A;
Table 3). We were further interested in the interaction of age and
condition. The contrast, semantic fluency > counting, revealed
a significant interaction with age only for young adults. Stronger
activity was observed in the paracingulate gyrus, pre-SMA, and
the dACC (Fig. 4B; Table 3). The interaction of age with task
difficulty (easy and difficult semantic categories) did not yield
any significant results.

Generalized PPIs

Based on the activation patterns from our univariate within-
group analyses, we conducted traditional gPPI analyses for the
five strongest activation peaks that fell within the MDN or DMN.
We asked whether and how increased semantic task demands
modulate the connectivity of our ROIs.

Whole-Brain Functional Connectivity for Semantic Fluency
Three ROIs were extracted from the univariate contrast, seman-
tic fluency > counting, the left pre-SMA and bilateral insulae.
For the seeds in the left pre-SMA and left insula, analyses

revealed only significant clusters in the group of younger adults,
whereas the seed in the right insula yielded only significant
results for the older adults. The left pre-SMA showed increased
connectivity with subcortical structures (bilateral caudate nuclei
and thalami) as well as with the left precuneus and PCC in the
parietal lobe (Fig. 5A; Supplementary Table S17). For the seed in
the left insula, we found a similar connectivity pattern. Signifi-
cant coupling was observed with bilateral caudate nuclei and the
left precuneus (Fig. 5B; Supplementary Table S18). For the older
adults, the right insula showed significant coupling with the
precuneus and pars orbitalis in left IFG (Fig. 5C; Supplementary
Table S19).

Moreover, two ROIs from the contrast, counting > seman-
tic fluency, which were associated with the DMN, the right
temporal pole, and the right precuneus, were used for tradi-
tional gPPI analyses. Seeding in the right temporal pole showed
increased functional connectivity exclusively in the ipsilateral
hemisphere. For the older adults, we found a significant cluster
in IFG (pars opercularis) which extended into the insula (Fig. 6A;
Supplementary Table S20). For the young adults, results revealed
significant clusters in the IFG (pars opercularis), superior frontal
gyrus, insula, and supramarginal gyrus (Fig. 6A, Supplementary
Table S20). The seed in the right precuneus revealed exten-
sive bilateral functional coupling in both age groups. For the
older adults, the right precuneus showed prominent connec-
tivity with frontal, temporal, and parietal areas in both hemi-
spheres (Fig. 6B; Supplementary Table S21). A similar pattern
emerged for the group of younger adults, albeit with a greater
number of significant clusters (Fig. 6B; Supplementary Table
S21). Two-sample t-tests did not show significant differences
between groups in the PPI results for either task.

Within- and Between-Network Functional Connectivity during
Semantic Fluency
To further examine the task-related connectivity within and
between the domain-general systems, MDN and DMN, during
the semantic fluency task compared with counting, we con-
ducted modified gPPI analyses. For each seed-to-target combi-
nation of the ROIs in MDN and DMN (Table 2), we calculated
intercept-only GLMs for each age group (Fig. 7A). For older adults,
the results showed significant positive functional connectivity
for regions within the MDN but not for regions within the
DMN. Further, the analyses revealed strong coupling for regions
between MD and DM networks. A similar pattern was observed
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Age-Dependent Contribution of Domain-General Networks Martin et al. 11

Table 3 Results for age-dependent differences in task-related activity

Anatomical structure Hemi k t x y Z

Interaction older > young adults for semantic fluency > rest (inclusively masked with [older adults: semantic fluency > rest])
Superior frontal gyrus R 110 6.84 28 −8 65
Precentral gyrus R 5.53 28 -8 54
Superior parietal lobe R 263 6.82 18 −60 60
Middle occipital gyrus R 6.04 31 -62 35
Precuneus R 5.93 11 -55 60
Precuneus R 5.39 13 -67 62
Middle frontal gyrus L 74 5.38 −36 15 38
Middle frontal gyrus L 4.05 -46 17 38
Precentral gyrus L 3.76 -41 2 48
Inferior parietal lobe L 109 5.12 −31 −45 54
Superior parietal lobe L 4.32 -19 -60 46
Precuneus L 4.28 -11 -70 48
Superior parietal lobe L 4.19 -16 -62 60
Middle frontal gyrus R 132 4.96 36 5 38
IFG, p.tr. R 4.53 36 17 24
IFG, p.op. R 4.07 48 17 13
IFG, p.op. R 3.73 51 15 26
Middle frontal gyrus R 74 4.47 26 12 51

Interaction young > older adults for semantic fluency > counting (inclusively masked with [young adults: semantic fluency > counting])
Pre-SMA L 79 4.84 −1 20 46
Pre-SMA R 3.81 11 27 32
Pre-SMA L 3.55 -1 10 48
Anterior cingulate cortex R 114 4.58 8 37 21
Pre-SMA R 4.36 1 37 26
Anterior cingulate cortex L 4.13 -1 20 21
Anterior cingulate cortex L 3.58 -4 5 29

Note: Cluster corrected at FWE P < 0.05 with a voxel-wise threshold at P < 0.001. Co-ordinates are given in MNI standard space, cluster size (k) is given in mm3, Global
cluster peaks are marked in bold. Note that no significant differences above cluster correction threshold were found for 1) interaction young > older adults for semantic
fluency > rest, 2) interaction older > young adults for semantic f luency > counting. Abbreviations: p. tr., pars triangularis; p.op., pars opercularis.

for young adults, albeit with overall stronger connectivity. Com-
pared with the counting task, results showed strengthened func-
tional connectivity within regions of the MDN and for regions
between MD and DM networks during semantic fluency.

Effect of Age on Within- and Between-Network
Functional Connectivity
We were interested whether there was an effect of age group
on the within- and between network functional connectivity.
To this end, each PPI network pair (within-MDN, within-DMN,
and between MDN and DMN) was regressed on age (Fig. 7B;
Supplementary Table S22). Multiple-comparison correction was
performed using Meff correction. The results did not show a
significant effect of age on within- and between-network func-
tional connectivity (Ps > 0.3), suggesting that the strength of
functional connectivity was age-invariant.

Effect of Functional Connectivity on In-Scanner Task Performance
To determine whether functional connectivity within and
between regions of MDN and DMN predicted participant’s in-
scanner task performance, we fitted generalized mixed-effects
models for accuracy and response time as outcome variables
and functional connectivity, age, and their interaction terms
as explanatory variables. Since the functional connectivity
measures were based on our contrast of interest, semantic

fluency > counting, statistical models were only fit for the
behavioral results for the semantic fluency and not for the
counting task. The results did not indicate significant effects
of functional connectivity on accuracy (Supplementary Table
S23). However, analyses revealed significant effects of functional
network connectivity on response time (Fig. 7C; Supplementary
Table S23 and S24). We identified main effects of within-DMN
(χ2 = 15.16, P < 0.001) and between-network functional connec-
tivity (χ2 = 31.44, P < 0.001) as well as of age (χ2 = 20.26, P < 0.001).
Beta coefficients indicated that, across networks, strengthened
functional connectivity was associated with slower response
times and that young adults performed generally faster than
older adults, which confirmed our behavioral results.

Moreover, significant interactions between age and within-
MDN (χ2 = 29.01, P < 0.001), within-DMN (χ2 = 37.40, P < 0.001),
and between-network functional connectivity (χ2 = 23.75,
P < 0.001) were found. Post hoc tests showed that age group had
a different effect on within- and between-network functional
connectivity. While response time increased with strengthened
connectivity in the MDN and the DMN for older adults, the
opposite pattern was observed for young adults who responded
faster when within-network functional connectivity increased
(all P < 0.001). For functional connectivity between MDN and
DMN, stronger coupling predicted slower responses in both age
groups, albeit with young adults showing a significantly steeper
positive slope than older adults (P < 0.001; Fig. 7C).
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Figure 5. Functional connectivity for seeds from contrast, semantic fluency > counting. Seeds are (A) left pre-SMA, (B) left insula, and (C) right insula. All results are
FWE-corrected at P < 0.05 at peak level with a minimum cluster size < 20 voxel. Abbreviations: CdN, caudate nucleus; IFGorb, inferior frontal gyrus, pars orbitalis.
Unthresholded statistical maps are available at https://neurovault.org/collections/9072/.

Effect of Functional Connectivity on Cognitive Performance
and Semantic Memory
We were interested in the relationship between functional con-
nectivity and general cognitive and semantic memory perfor-
mance, which were assessed via neuropsychological tests out-
side of the scanner. Since some tests showed high collinearity,
we first performed a factor analysis on the data of both age
groups together. Results identified two factors: A “cognitive
performance” factor with high loadings on Trail Making Tests,
A (0.8) and B (0.71), the Digit Symbol Substitution Test (0.73),
the reading span test (0.45), and a “semantic memory” factor
with high loadings on the spot-the-word test (0.5), and the
two verbal fluency tests for hobbies (0.44) and surnames (0.98).

Individual factor scores for participants were extracted and were
subsequently correlated with functional connectivity measures.
The resulting P values were corrected for multiple comparisons
using Bonferroni correction (P = 0.05/3 functional connectivity
parameters = 0.017). First, we used partial Pearson correlations
to test for a relation between connectivity and cognitive perfor-
mance while controlling for the effect of age. Results revealed a
significant positive correlation between executive functions and
within-MDN functional connectivity (r = 0.36, P = 0.018). Second,
we calculated Pearson correlations within each age group. For
older adults, we found a significant positive correlation between
cognitive performance and within-MDN functional connectiv-
ity (r = 0.46, P = 0.043; Fig. 7D). For young adults, results showed
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Age-Dependent Contribution of Domain-General Networks Martin et al. 13

Figure 6. Functional connectivity for seeds from contrast, counting > semantic fluency. Seeds are (A) right temporal pole and (B) right precuneus. All results are FWE-
corrected at P < 0.05 at peak level with a minimum cluster size > 20 voxel. Abbreviations: SFG, superior frontal gyrus; SMG, supramarginal gyrus; LO, lateral occipital
cortex; AG, angular gyrus; FP, frontal pole. Unthresholded statistical maps are available at https://neurovault.org/collections/9072/.

a significant positive correlation between semantic memory
and functional connectivity between MDN and DMN (r = 0.48,
P = 0.024; Fig. 7D).

Taken together, functional connectivity within- and between-
MD and DM network regions was associated with efficiency
during the experimental task as well as general cognitive
and semantic performance in both age groups. The effect of
functional connectivity on response time was moderated by

age, with young adults profiting from a strengthened within-
network connectivity, whereas older adults showed a decline
in response speed. Furthermore, both age groups performed
slower when functional connectivity between both domain-
general systems increased. Finally, functional connectivity
was differently related to out-of-scanner tasks in both age
groups. While analyses revealed a positive association between
cognitive performance and within-MDN functional connectivity
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Figure 7. Functional connectivity of domain-general network regions during semantic fluency. (A) Within- and between-network functional connectivity for each seed
to target combination for each group. Heatmaps show t values. Thresholded t values with Meff-corrected α of 0.0018 are indicated with black boxes. (B) Effect of age on
functional connectivity. There were no age differences in functional connectivity between or within networks. Heatmaps show t values with Meff-corrected α of 0.02.
Significant effects are indicated with black boxes. (C) Significant two-way interactions between age and functional connectivity for response time during semantic

fluency. (D) Correlation analyses between functional connectivity measures and neuropsychological factors. For within-MDN connectivity, only older adults showed a
significant correlation with executive functions, while only young adults showed a significant correlation between semantic memory and between-network functional
connectivity. Abbreviations: R, right hemisphere; L, left hemisphere; AG, angular gyrus; ACC, anterior cingulate cortex; Prec, precuneus.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab252/6360348 by M

PI C
ognitive and Brain Science user on 03 Septem

ber 2021
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in older adults, between-network functional connectivity
showed a positive effect on semantic memory in young adults.

Discussion
The current study set out to describe the effects of aging on the
interplay of domain-specific and domain-general neural net-
works in semantic cognition. By contrasting a semantic fluency
task with a low-level verbal control task in an fMRI experi-
ment, we delineated two distinct task-related networks, which
displayed strong overlap with the domain-general MD and DM
systems. Using task-based connectivity analyses, our findings
point toward a strong interaction of these networks during
verbal semantic processing across age groups and lend support
to the notion that integration between usually anticorrelated
functional networks increases for tasks that require cognitive
control (Shine et al. 2016). Importantly, our results provide new
insights into the impact of age on the functional coupling within
and between MDN and DMN regions when semantic knowledge
is retrieved in a goal-directed manner from memory. In line with
a recent suggestion that additional recruitment of the prefrontal
cortex in older adulthood might not reflect compensation but
rather reduced efficiency or specificity (Morcom and Henson
2018), we show here that increased in-phase synchronization
of task-relevant networks is generally associated with a decline
in task efficiency in older adults, whereas young adults capital-
ize more on strengthened functional connectivity. This finding
sheds new light on the frequently reported pattern of strength-
ened between-network functional connectivity in older adults
at rest (Chan et al. 2014; Geerligs et al. 2015; Spreng et al. 2016).

Our task paradigm revealed two distinct functional networks
for semantic fluency and counting. The main effect of seman-
tic fluency displayed a predominantly left-lateralized fronto-
temporo-parietal network for both age groups with additional
activation peaks in right frontal and temporal areas, bilateral
caudate nuclei, and the cerebellum. These results align well
with previous investigations that applied a semantic fluency
paradigm (Vitali et al. 2005; Meinzer et al. 2009; Whitney et al.
2009; Birn et al. 2010; Meinzer, Flaisch, et al. 2012; Meinzer,
Seeds, et al. 2012; Nagels et al. 2012; Marsolais et al. 2014;
Wagner et al. 2014; Baciu et al. 2016). The main effect of the
counting task was evident in both groups in bilateral activation
of sensorimotor cortices and the cerebellum, which is consis-
tent with previous studies that used an automated speech task
(e.g., Birn et al. 2010; Geranmayeh et al. 2014; Marsolais et al.
2014). Further, older adults showed recruitment of the pre-SMA,
which could reflect increased cognitive demands for this age
group while keeping track of the numbers during counting. In
the direct comparison of both tasks, semantic fluency elicited
a network that resembled the main effect of the task minus
activity in pre- and postcentral gyri in both age groups, which
corroborates the functional role of this network in spoken lan-
guage beyond low-level sensorimotor aspects (Geranmayeh et al.
2014). Significant activation for the counting task compared
with semantic fluency was evident in a mainly right-lateralized
network. Previous studies have suggested that neural networks
for highly overlearned automated speech tasks are either right-
lateralized in healthy participants (Vanlancker-Sidtis et al. 2003;
Sidtis et al. 2009) or show less left lateralization than seman-
tically rich language production tasks (Bookheimer et al. 2000;
Petrovich Brennan et al. 2007). Further evidence stems from the
common observation that automated speech (e.g., counting) is

often preserved in patients who suffer from aphasia after a left
hemisphere stroke (Vanlancker-Sidtis et al. 2003).

Despite the semantic nature of the task, we found that the
strongest activation clusters for semantic fluency were located
in the domain-general MD system in both age groups. These
results are in line with previous studies that applied a similar
task (e.g., Lurito et al. 2000; Basho et al. 2007) and highlight
the strong executive aspect of this paradigm. There is emerging
evidence on the overlap of language-specific regions like the
left IFG with networks that are implicated in domain-general
executive processing (Fedorenko et al. 2012) and semantic con-
trol processes (Thompson-Schill et al. 1997; Noonan et al. 2013;
Jackson et al. 2021). A recent meta-analysis demonstrated an
overlap of some regions of the semantic control network with
the MDN, thus emphasizing the role of domain-general control
in language processing (Jackson 2021). Here, we observed that
semantic fluency predominantly activated the domain-general
regions of the semantic control network, like the pre-SMA and
the dorsomedial prefrontal cortex, including dorsal IFG, and
only a small part of domain-specific semantic control (ventral
IFG). Hence, the domain-general control regions may not be
language-specific but appear to strongly contribute to a task that
requires goal-directed controlled access to semantic memory
while monitoring the verbal articulation of words that match
the semantic categories. Based on our univariate results, the
scope of the present investigation was confined to the age-
dependent contribution of domain-general systems to seman-
tic cognition. Nonetheless, their interaction with the semantic
network remains certainly an important question for future
research. Further support for the contribution of executive func-
tions to semantic fluency stems from behavioral studies that
associated cognitive flexibility, inhibition, working memory, and
attention with successful performance (Aita et al. 2018; Gordon
et al. 2018; Amunts et al. 2020). For both age groups, peak clusters
of counting were found in the posterior DMN, which is in line
with our expectation of a low-level language production task in
comparison with the more demanding semantic fluency task.

Our whole-brain functional connectivity results based on
traditional gPPI analyses showed that regions in the domain-
general MD and DM systems strongly interact during a seman-
tic word retrieval task compared with counting across both
age groups. This was true for seeds coming from the MDN
as well as the DMN. Furthermore, we observed some inter-
action with regions that have been associated with semantic
control, like left and right IFG, and with semantic cognition in
general, like right MTG (Jackson 2021). The strong interaction
of MD and DM regions is in line with previous studies that
reported task-specific functional coupling of cognitive control
regions with the DMN, most notably the posterior cingulate
cortex (PCC)/precuneus, especially in tasks requiring controlled
access to semantic memory (Krieger-Redwood et al. 2016; Smith
et al. 2016). Remarkably, the PCC/precuneus was the only region
in our study that showed functional connectivity with all seeds
from the MDN and displayed extensive functional coupling with
multiple nodes in the DMN as well as with other neural networks
in both age groups. This finding stresses its role as a cortical hub
connecting networks to support complex behavior (Leech et al.
2012). The functional coupling of MDN and DMN is especially
interesting in light of our univariate results where we observed
significant deactivation in regions of the DMN during semantic
fluency in both age groups. It corroborates the notion that
networks that are anticorrelated during task can still show func-
tional integration in contextually relevant situations to facilitate
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goal-directed behavior (Spreng et al. 2014; Krieger-Redwood et al.
2016).

We gained further insight into the task-related functional
integration of MD and DM network regions by our analyses
of phase synchronization within and between both domain-
general systems. Our results show that functional coupling
within the MDN and between the MDN and the DMN strength-
ened with an increase of task load, which was true, independent
of age. First, the positive coupling within regions of the MDN is
in line with our univariate results for semantic fluency: Here,
we found that the strongest activation clusters were located
in the MDN in both age groups, thus confirming the necessary
engagement of this network for successful task performance.
Second, the strong in-phase synchronicity between regions of
the MD and DM networks for semantic fluency compared with
the control task complement our PPI results, which showed a
strong interaction of both domain-general systems. This is line
with the notion that the integration of the DMN is relevant
for successful task processing in memory-guided cognition
(Vatansever et al. 2015; Smith et al. 2016), especially when
access to semantic memory is required (Wirth et al. 2011;
Krieger-Redwood et al. 2019).

Interestingly, our results on whole-brain as well as within-
and between-network functional connectivity did not reveal an
effect of age. There is an extant literature describing age-related
changes in connectivity in resting-state networks, with the
most common observation of decreased within- and increased
between-network functional connectivity (Chan et al. 2014;
Geerligs et al. 2015; Ferreira et al. 2016; Grady et al. 2016;Ng
et al. 2016; Zonneveld et al. 2019). However, results are more
inconsistent for task-related changes in functional connectivity
with age. Across a range of cognitive tasks, studies reported
a similar pattern as for resting-state investigations (Geerligs
et al. 2014; Spreng et al. 2016), with no changes for within-
but only for between-network connectivity (Gallen et al. 2016;
Grady et al. 2016), as well as for age invariance (Trelle et al. 2019;
Pongpipat et al. 2020). In the domain of semantic cognition,
findings are sparse with one study observing reduced within-
network integration for a semantic fluency task, which was not
associated with poorer performance in older adults (Marsolais
et al. 2014). There are two possible explanations for the present
age invariance in functional connectivity. First, the group of
older adults in our study might have been too young to detect
changes in functional connectivity. Longitudinal studies on
cognitive aging showed that a turning point in functional
coupling takes place around the age of 65–70 years (Ng et al.
2016; Zonneveld et al. 2019). Thus, although the young adults in
our study displayed numerically greater and stronger functional
coupling than the older adults, the overall pattern was too
similar in both groups. Second, the lack of an age effect on
functional connectivity might be related to the semantic nature
of our fluency paradigm. Semantic tasks have been shown to
require functional coupling between cognitive control as well as
DM regions like the PCC/precuneus, which has been implicated
in semantic cognition even in young adults (Krieger-Redwood
et al. 2016). Hence, this might have aggravated the possibility of
observing the frequently reported increase of between-network
functional connectivity in older adults and underlines the
necessity for more task-based investigations in the future to
better understand the picture of neurocognitive aging.

Intriguingly, despite the observed age invariance, func-
tional connectivity had different effects on in-scanner task
performance and cognitive functioning in both age groups.

Our results show that older adults did not capitalize on
strengthened functional connectivity in the same way as young
adults. This was the case for functional connectivity within
the MDN and the DMN where an increase of connectivity
was associated with slower performance in the semantic
fluency task in older adults but with faster performance in
young adults (Fig. 8A). By contrast, strengthened between-
network functional connectivity led to a slower performance
in both age groups, with a stronger effect for young adults
(Fig. 8B). Considering our whole-brain connectivity results that
showed strong positive coupling between both networks during
semantic fluency, this decrease in efficiency might reflect the
more effortful communication between task-relevant networks
compared with within-network coupling, hence leading to a
slower performance across age groups. Interestingly, despite
the negative effect on task efficiency, increased functional
coupling between MD and DM had a positive effect on semantic
memory in young but not in older adults. For the latter group,
strengthened connectivity within MD regions was associated
with better cognitive performance, albeit still at a significantly
lower level of performance than in young adults.

Overall, our findings on the age-dependent relevance of func-
tional connectivity to behavior are in line with theories of neu-
rocognitive aging that suggest a reduced efficiency of neural
networks with age (Davis et al. 2012; Geerligs et al. 2014; Shafto
and Tyler 2014). Although older adults rely on similar neural net-
works as young adults for task processing, they cannot equally
capitalize on them. Young adults increased their performance as
well as their processing efficiency with strengthened in-phase
synchronization of task-relevant networks, while older adults
showed improvements in cognitive performance but not in effi-
ciency with increased connectivity. Our results thus provide new
insights into the behavioral relevance of the frequently observed
pattern of neural dedifferentiation (Baltes and Lindenberger
1997; Park et al. 2004; Grady 2012), showing that older adults
do not engage task-relevant networks in the same beneficial
way as young adults. This is especially relevant in the context
of semantic cognition where, according to the DECHA frame-
work, increased semantic knowledge with age could lead to a
performance advantage (Spreng and Turner 2019). Here, we show
that this is not the case in a task that requires an efficient
use of control systems while accessing semantic memory; thus,
lending support to the notion that older adults are less flexible
in the goal-directed functional coupling of executive and default
resources (Spreng and Turner 2019).

Our findings on age-related differences in cortical activation
for both tasks further underline the observed reduced effi-
ciency of neural networks in older adults. The comparison of
age groups for the semantic fluency task compared with rest
revealed stronger activation only for the older adults. Significant
clusters comprised hubs of the MDN as well as the right IFG,
which has been emphasized in studies on semantic fluency in
aging before (Meinzer et al. 2009; Meinzer, Flaisch, et al. 2012;
Meinzer, Seeds, et al. 2012; Nagels et al. 2012). Remarkably, the
interaction between both tasks and age revealed significant
effects only for the young adults who displayed stronger acti-
vation of frontal key regions of the MDN, including the pre-
SMA and dACC for semantic fluency. This finding suggests a
pattern of increased processing efficiency, which was reflected
by faster response times compared with the older group. It
converges with previous studies on language production and
comprehension that associated greater activation in the pre-
frontal cortex with an increased task demand in young adults
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Figure 8. The different effects of within- and between-network functional connectivity on task performance in each age group. (A) Young adults improved their

efficiency in the form of faster response times, whereas older adults performed slower when functional connectivity within the MDN or DMN increased. Moreover,
strengthened connectivity within the MDN was related to a better performance in executive measures for older adults. (B) Strengthened between-network functional
connectivity led to a decline in efficiency in both age groups. However, it was also associated with an improved performance in semantic memory only for young
adults.

(Thompson-Schill et al. 1997; Fu et al. 2002; Whitney et al. 2009).
The supplementary activation of MDN regions in older adults
for the semantic fluency task compared with rest aligns with a
meta-analysis on semantic cognition that found greater activity
in areas of the MDN with older age (Hoffman and Morcom 2018).
The nature of this upregulation in brain activity in older adults
has been the subject of some debate (Morcom and Johnson 2015;
Cabeza et al. 2018). Here, we observed additional activation in the
older adults while they performed poorer than the young adults
during the more demanding semantic fluency task. In light
of the additional beneficial activation of frontal MDN regions
in the young adults, the observed upregulation in the older
adults seems to further support the idea of age-related reduced
efficiency of neural responses (Nyberg et al. 2014) leading to a
stronger involvement of executive control at a lower level of
task demand (Hakun et al. 2015; Gallen et al. 2016). This inter-
pretation is backed up by the observed age-related differences
in the task-dependent activation of the MD and DM regions.
During semantic fluency, older adults showed less deactivation
of the DMN than young adults while during counting, the MDN
was less deactivated in older than in young adults. Thus, in
line with our functional connectivity results, older adults recruit
similar neural resources as young adults, albeit at a lower level
of processing efficiency, which lends additional support to the
hypothesis of dedifferentiation (Park et al. 2004; Morcom and
Henson 2018).

It should be noted that our results did not show a consistent
effect of the intended modulation of task difficulty within the
semantic fluency task on neural activation patterns. This could
be related to the limited number of items participants had to
produce for each category. A recent behavioral investigation on
semantic fluency showed that the amount of correct responses
continuously decreases with time (Gordon et al. 2018). Thus,
although the effect of difficulty was present in the behavioral
results in the form of reduced accuracy and slower responses,
we assume that nine trials per category were not enough to
establish this effect on the neural level.

Finally, it should be noted that regions for the MDN and
DMN were selected from opposite contrasts and are therefore
anticorrelated during the semantic fluency and counting task,
respectively. However, our functional connectivity results are not

a mere consequence of this selection procedure. The extracted
parameter estimates of the studied ROIs are based on the PPI
contrast, semantic fluency > counting, and do thus represent
functional connectivity only for the language production task.
Surprisingly, results from our linear regression models for these
ROIs, as displayed in Figure 7A, did not only show positive con-
nectivity between seeds and targets within the MDN, which
is in line with our univariate results, but also between seeds
coming from the MDN or DMN and targets in either network,
which seems to contradict our univariate results where regions
in the DMN were deactivated during semantic fluency. The func-
tional connectivity results thus demonstrate a general property
of network integration for usually anticorrelated networks for
successful task processing.

Conclusion
In conclusion, the current study sheds light on the age-
dependent contribution of the domain-general MD and DM
systems during a verbal semantic fluency task. While univariate
results revealed strong activity in the MDN during task
processing, functional connectivity analyses demonstrated
a strong interaction between the MDN and the DMN for
semantic fluency. This finding corroborates the notion that
usually anticorrelated networks integrate for successful task
processing, especially when access to semantic memory is
required. Although the strength of functional connectivity
within- and between-networks was age-invariant, it had a
different behavioral relevance in both age groups. Only the
young adults engaged task-relevant networks in a beneficial
way. This was evident in the form of better processing
efficiency during semantic fluency and generally improved
semantic memory. In older adults, strengthened functional
connectivity within the MDN had a positive effect on cognitive
performance, albeit older adults still performed at a lower
level than young adults. Our results provide new insights
into the concept of age-related reduced efficiency in the
domain of semantic cognition and inform about the behav-
ioral relevance of the frequently observed pattern of neural
dedifferentiation.
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3 Age-Related Reorganization of
Functional Network Architecture in
Semantic Cognition

Study 2

The following study explored age-related differences in the functional network architecture
during semantic processing and their behavioral relevance. It has been published in Cerebral
Cortex.
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Cognitive aging is associated with widespread neural reorganization processes in the human brain. However, the behavioral impact
of such reorganization is not well understood. The current neuroimaging study investigated age differences in the functional network
architecture during semantic word retrieval in young and older adults. Combining task-based functional connectivity, graph theory
and cognitive measures of fluid and crystallized intelligence, our findings show age-accompanied large-scale network reorganization
even when older adults have intact word retrieval abilities. In particular, functional networks of older adults were characterized by
reduced decoupling between systems, reduced segregation and efficiency, and a larger number of hub regions relative to young adults.
Exploring the predictive utility of these age-related changes in network topology revealed high, albeit less efficient, performance for
older adults whose brain graphs showed stronger dedifferentiation and reduced distinctiveness. Our results extend theoretical accounts
on neurocognitive aging by revealing the compensational potential of the commonly reported pattern of network dedifferentiation
when older adults can rely on their prior knowledge for successful task processing. However, we also demonstrate the limitations of
such compensatory reorganization and show that a youth-like network architecture in terms of balanced integration and segregation
is associated with more economical processing.

Key words: aging; functional connectivity; graph theory; language production; semantic memory.

Introduction
Semantic memory refers to the general knowledge of words,
concepts, and ideas we accumulate across the lifespan. It is
a fundamental human ability and central to communication.
Unlike other cognitive domains, semantic memory is usually
preserved through adulthood into very old age (Verhaeghen et al.
2003), thus enabling communication abilities to remain largely
intact in healthy aging. Nonetheless, memory problems in ver-
bal communication, such as finding the right word and tip-of-
the-tongue episodes, are a common complaint with increasing
age (Burke and Shafto 2004). This paradox has been explained
in terms of less efficient access and retrieval processes during
language production that rely on semantic and cognitive control
functions like working memory, attention, and inhibitory control,
and are well established to steadily decline with age (Hedden and
Gabrieli 2004). However, little is known about the neural mecha-
nisms underlying those changes in access to semantic memory
with age.

The field of network science provides tools to model and
explore organization principles of complex systems such as
the human brain (Rubinov and Sporns 2010). Studies in young
adults have revealed a topological organization of the brain that
combines local information processing with global information
integration aimed at optimizing global cost efficiency (“small-
world” organization; Bassett et al. 2009; Bullmore and Sporns
2012). Age-related changes to this modular organization have
been described as general decline of network segregation in
the form of decreased within- and enhanced between-network

connectivity (Chan et al. 2014; Setton et al. 2022). Moreover,
increasing age has been associated with reduced small-world
organization, modularity, and local and global efficiency of
functional brain networks (Betzel et al. 2014; Geerligs et al.
2015; Chong et al. 2019). The impact of such reorganization
on cognition remains debated. Most studies associated neural
dedifferentiation with performance decline (Chan et al. 2014;
Sala-Llonch et al. 2014; Chong et al. 2019), whereas some have
pointed towards a pattern of compensational response (Stumme
et al. 2020).

To date, most results stem from resting-state functional
magnetic resonance imaging (fMRI) investigations or task-based
studies in domains primarily affected by age, such as episodic
and working memory. However, important insight can be gained
by investigating domains, which rely on semantic cognition like
language and creativity. Here, older adults might benefit from
increased connectivity between usually anticorrelated networks
such as executive and default networks since they can depend
on prior knowledge to maintain high performance (Spreng et al.
2016; Adnan et al. 2019). In this context, semantic fluency tasks
are especially valuable since they tap into semantic memory
but also cognitive control and are often linked to preserved albeit
slower performance with age (Gordon et al. 2018). Previous studies
revealed age-related reduced functional connectivity within
domain-specific networks, however, without affecting behavioral
performance (Marsolais et al. 2014; Ferré et al. 2020). In addition,
we recently showed that increased crosstalk between domain-
general networks is essential for successful task processing,

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac387/6747069 by M

PI C
ognitive and Brain Science user on 11 O

ctober 2022



2 | Cerebral Cortex, 2022

independent of age, when access to semantic memory is required
(Martin et al. 2022). Thus, domains that are usually well-preserved
in aging inform the current understanding of age-accompanied
changes in functional brain networks and their behavioral
relevance.

The present study contributes to this field by exploring age-
related reorganization of functional networks during a semantic
word retrieval task. Networks of task-based functional connec-
tivity in groups of healthy young and older adults were derived
via data-driven, multivariate methods. We were interested in age
differences in the coupling of task-relevant networks and their
behavioral relevance. Furthermore, we applied graph-theoretical
measures of brain system segregation, integration, and network
hubs to investigate the network topology in young and older
adults, and related these measures to participants’ in-scanner
task performance and abilities of fluid and crystallized intelli-
gence. Exploring task-based network topologies as a function of
cognitive performance in a domain that is usually well-preserved
with age enabled us to gain key insights into age-related reorga-
nization processes and to inform theoretical accounts regarding
compensatory and detrimental effects of neurocognitive aging on
behavior.

Materials and methods
Participants
Participants consisted of 31 healthy older adults (15 female; mean
age = 65.5, standard deviations, SD = 2.75, range = 60–69 years) and
30 healthy young adults (16 female; mean age = 27.6, SD = 4.3,
range = 21–34 years), which is the same sample as described pre-
viously (Martin et al. 2022). Data of 3 older participants as well
as single runs of 6 participants had to be excluded due to strong
motion during fMRI (>1 voxel size), leading to a final sample
size of 28 participants in the older group. Although both groups
were matched for gender, participants in the young group had
significantly more years of education (t(55.86) = 5.21, P < 0.001).
Inclusion criteria were native German speaker, right-handedness,
normal hearing, normal or corrected-to-normal vision, no history
of neurological or psychiatric conditions, and no contraindication
to magnetic resonance imaging. Older adults were additionally
screened for cognitive impairments with the Mini-Mental State
Examination (Folstein et al. 1975; all ≥26) points and for depres-
sion with the Beck Depression Inventory (Beck et al. 1996; all ≤ 14
points). A battery of neuropsychological tests was administered
probing semantic knowledge as well as verbal- and nonverbal
executive functions (Fig. 1a). Differences between age groups for
neuropsychological measures were determined with 2-sample t-
tests. Consistent with previous research, older adults only per-
formed better for the measure of semantic memory (spot-the-
word test; t(54.39) = 3.14, P = 0.003), indicating a maintenance of
semantic knowledge and an increase in vocabulary with age
(Verhaeghen et al. 2003), whereas young adults performed bet-
ter on all other tests (all at P < 0.01), which is consistent with
the assumption of a general age-related decline of executive
functions (Hedden and Gabrieli 2004). For all reported correla-
tion analyses, neuropsychological measures were summarized
via exploratory factor analysis. Results revealed an “executive
functions” factor with high loadings on trail-making tests A (0.8)
and B (0.71), digit symbol substitution test (0.73), and reading span
test (0.45), and a “semantic memory” factor with spot-the-word
test (0.5) and verbal fluency tests for hobbies (0.44) and surnames
(0.98). Prior to the experiment, participants gave written informed
consent. The study was approved by the local ethics committee of

the University of Leipzig and conducted in accordance with the
Declaration of Helsinki.

Experimental design
The experimental procedure is reported in detail in previous work
(Martin et al. 2022) and briefly summarized here. Participants
completed 1 experimental session, which consisted of 2 runs of
the fMRI experiment and neuropsychological tests, and lasted 2 h
in total. Experimental tasks consisted of a paced overt semantic
fluency task and a control task of paced overt counting, which
were implemented in a block design in the scanner (Fig. 1b). For
the semantic fluency task, participants were asked to produce
exemplars for 20 semantic categories, which were divided in 10
easy (e.g. colors) and 10 difficult (e.g. insects) categories based
on a separate pilot study in healthy young and older adults
(Martin et al. 2022). Task blocks were 43-s long and separated
by rest blocks of 16 s. Each block started with a 2-s visual word
cue indicating whether participants were expected to generate
category exemplars or count forward (1–9) or backward (9–1).
This was followed by 9 consecutive trials of the same category or
counting task, respectively. Trials within 1 block were separated
by interstimulus intervals of 2–4 s. Participants were instructed to
generate 1 exemplar for a category or 1 number per trial, which
was indicated by a green cross on the screen, and to pause when
the cross turned red. They were told not to repeat items and to
say “next” if they could not think of an exemplar for the respec-
tive category. Each run contained 10 semantic fluency blocks,
divided in easy and difficult categories, and 10 counting blocks,
consisting of forward and backward counting, thus resulting in
a total duration of 19.4 min per run. The order of blocks was
counter-balanced and pseudo-randomized across participants.
Before the fMRI experiment, participants received instructions
and practiced the task with a separate set of categories outside the
scanner. Stimuli were presented using the software Presentation
(Neurobehavioral Systems, Berkeley, United States; version 18.0).
Answers were recorded via a FOMRI III microphone (Optoacous-
tics, Yehuda, Israel). After the experiment, response recordings
were analyzed for verbal answers and onset times after being
cleaned from scanner noise via Audacity software (version 2.3.2)
and transcribed by 3 independent raters.

fMRI data acquisition and preprocessing
fMRI data were collected on a 3T Prisma scanner (Siemens,
Erlangen, Germany) with a 32-channel head coil. For the
acquisition of functional images, a multiband dual gradient-
echo echo-planar imaging sequence was used for optimal blood
oxygenation level-dependent (BOLD) sensitivity throughout
the entire brain (Poser et al. 2006; Halai et al. 2014). The
following scanning parameters were applied: time repetition
(TR) = 2,000 ms; time echo (TE) = 12 ms, 33 ms; flip angle = 90◦;
voxel size = 2.5 × 2.5 × 2.75 mm with an inter-slice gap of
0.25 mm; field of view (FOV) = 204 mm; multiband acceleration
factor = 2. To increase coverage of anterior temporal lobe (ATL)
regions, slices were tilted by 10◦ of the AC–PC line. Six hundred
sixteen images consisting of 60 axial slices in interleaved order
covering the whole-brain were continuously acquired per run. In
addition, field maps were obtained for later distortion correction
(TR = 8,000 ms; TE = 50 ms). This study analyzed the data from
echo 2 (TE = 33 ms) since preprocessing was performed using the
software fMRIPrep (Esteban et al. 2019), which currently does not
support the combination of images acquired at different echo
times. We chose to use results from preprocessing with fMRIPrep
since this pipeline provides state-of-the-art data processing
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Fig. 1. Neuropsychological results and experimental design. a) Test scores were z-transformed. Higher z-values signify better performance. STW, spot-
the-word test; DSST, digit symbol substitution test; and TMT trail-making test. ∗∗∗ P < 0.001, ∗∗ P < 0.01, and ∗ P < 0.05. b) The fMRI experiment consisted
of task blocks of overt paced semantic fluency and counting, which were presented in a pseudo-randomized order and separated by rest periods. An
example for each task is shown. Participants were instructed to produce exactly one exemplar for a category or to say one number when the fixation
cross turned green and to pause when the cross turned red. If they could not think of an exemplar, they were instructed to say “next.” Each task block
contained 9 trials of the same semantic category/counting task, which were separated by jittered interstimulus intervals.

while allowing for full transparency and reproducibility of the
applied methods and a comprehensive quality assessment of
each processing step that facilitates the identification of potential
outliers. We also double-checked results from preprocessing
with fMRIPrep with a conventional SPM preprocessing pipeline
of both echoes. The results show strong overlap between both
pipelines for univariate comparisons, confirming the reliability
of the results independent of individual decisions during the
preprocessing (Supplementary Fig. S1, see online supplementary
material for a color version of this figure). A high-resolution,
T1-weighted 3D volume was obtained from our in-house
database (if it was not older than 2 years) or collected after the
functional scans using an MPRAGE sequence (176 slices in sagittal
orientation; TR = 2,300 ms; TE = 2.98 ms; flip angle = 9◦; voxel
size = 1 × 1 × 1 mm; no slice gap; FOV = 256 mm). Preprocessing
was performed using fMRIPprep 20.2.3 (Esteban et al. 2019),
which is based on Nipype 1.6.1 (Gorgolewski et al. 2011). In
short, preprocessing steps included skull stripping, distortion
correction, co-registration, slice timing correction, and calculation
of several confounding time-series for each of the 2 BOLD runs per
participant. Anatomical T1-weighted images were skull-stripped,
segmented, and spatially normalized. For spatial normalization
to standard space, the Montreal Neurological Institute (MNI)
ICBM 152 nonlinear sixth Generation Asymmetric Average Brain
Stereotaxic Registration Model (MNI152NLin6Asym) was entered
as output space in fMRIPrep. For more details on the preprocessing
pipeline, see the section corresponding to workflows in fMRIPrep’s
documentation (https://fmriprep.org/en/20.2.3/workflows.html).

Moreover, we investigated a potential resampling bias through
the MNI template. To this end, we created a study-specific tem-
plate based on the structural scans of our participants. We used
the Computational Anatomy Toolbox (CAT12) in SPM12 to seg-
ment the structural images. Compared with the segmentation
process included in SPM12, CAT12 provides a more fine-grained,
advanced segmentation that has been shown to be robust to

noise and to produce reliable results (Tavares et al. 2020). We
then applied the diffeomorphic anatomical registration through
exponentiated lie algebra (DARTEL; Ashburner 2007) toolbox to
create an anatomical study-specific template (young and older
adults together; for a more detailed description of the procedure
see Michael et al. 2016). The coregistered functional images were
normalized to this study-specific template in MNI space and
subsequently smoothed with a 5-mm full-width half-maximum
(FWHM) Gaussian kernel. First- and second-level statistics were
calculated analogously to the analyses using the data prepro-
cessed with fMRIPrep. The results did not reveal major differences
between the 2 resampling procedures for univariate within-group
comparisons (Supplementary Fig. S2, see online supplementary
material for a color version of this figure). All significant clusters
that were found with the study-specific template approach were
also found with the results based on the fMRIPrep preprocessing
pipeline (resampling to the MNI template). Furthermore, the latter
produced more reliable activation in the ATL in both age groups.

After preprocessing, 29 volumes from the beginning of each run
were discarded since they were collected for the combination of
the short and long TE images. This yielded 587 normalized images
per run, which were included in further analyses.

Independent component analysis
We applied group independent component analysis (ICA) to
define spatially independent task-active networks in a data-
driven manner. ICA has been shown to decompose fMRI time
series into reliable functionally connected components with the
advantage of simultaneously removing non-neural fluctuations
through the identification of artefactual components (Griffanti
et al. 2014). Preprocessed, normalized data were smoothed with a
5-mm3 FWHM Gaussian kernel and entered into a general linear
model for each participant and session using Statistical Para-
metrical Mapping software (SPM12; Wellcome Trust Centre for

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac387/6747069 by M

PI C
ognitive and Brain Science user on 11 O

ctober 2022



4 | Cerebral Cortex, 2022

Neuroimaging), implemented in MATLAB (version 9.10/R2021a).
General linear model (GLM) included regressors for the task blocks
(semantic fluency and counting) as well as nuisance regressors
consisting of the 6 motion parameters and individual regressors
for strong volume-to-volume movement as indicated by values of
framewise displacement (FD) > 0.9 (Siegel et al. 2014). In addition,
an individual regressor of no interest was included in the design
matrix if a participant had missed a whole task block during the
experiment (n = 10). Before model estimation, a high-pass filter
with a cutoff at 128 s was applied to the data.

Preprocessed, normalized, and smoothed data were analyzed
using the Group ICA of fMRI Toolbox (GIFT v4.0c). Dimensions
were reduced to 55 using minimum description length informa-
tion criteria. Icasso was repeated 50 times to ensure reliability of
the decomposition, and group-level ICs were back-reconstructed
to the participant level using the group-information guided ICA
(GICA3) algorithm (Calhoun et al. 2001). We calculated group ICA
treating all participants as 1 group to ensure that the same com-
ponents were identified in both groups. We discarded those com-
ponents related to banding artifacts and noise after careful visual
inspection of the spatial maps according to established criteria
(Griffanti et al. 2014; see Supplementary Fig. S3, see online supple-
mentary material for a color version of this figure for an overview
of all 55 ICs). From the resulting 13 non-noise components, low-
level sensory components including auditory, sensorimotor, and
visual networks were identified and removed since their roles
were beyond the scope of our investigation. To characterize the
spatial extent of the 7 remaining components at the group-level,
we calculated 1-sided t-tests for participants’ spatial maps. A
gray matter mask that restricted statistical tests to voxels in the
cerebrum was applied to all group-level analyses. Results were
corrected for multiple comparisons using a peak level threshold
at P < 0.05 with the family-wise error (FWE) method and a cluster-
extent threshold of 10 voxels.

Brain network construction
Brain networks were constructed based on the 7 selected com-
ponent maps of the ICA. To determine network labeling of the
thresholded maps, we used the Jaccard index (J), a measure of
spatial similarity (Jaccard 1912). By calculating the ratio of over-
lapping voxels in 2 binary spatial network maps relative to all
active voxels in either image, the Jaccard index can be used as
a measure to assess the fit between a spatial component map (A)
and a template image (B):

J = |A ∩ B|
|A ∪ B|

The index ranges from 0 to 1, with a high Jaccard index denoting
high similarity of 2 spatial maps. It has been used previously to
assess similarity of brain activation maps with template network
parcellations (Jackson et al. 2019; Gordon et al. 2020). We defined
a minimum threshold of J = 0.15 to consider a network template
for a spatial component mask (Jackson et al. 2019). Next, if 2
components were best described by the same network template
thereby indicating that the network might have split up in mul-
tiple components, we assessed the similarity of the combined
component maps to the template. If the combined map reached
a higher similarity index than each component individually, the
combination was kept as a reflection of the respective network.

As template masks, we used the 17-networks functional
connectivity-based parcellation scheme (Yeo et al. 2011) as

well as the network masks of general semantic cognition and
semantic control defined in a meta-analysis (Jackson 2021). We
included separate template masks for semantic cognition in
our analysis to account for the semantic nature of our task.
We also probed similarity of Jaccard indices with a 7-networks
parcellation scheme (Yeo et al. 2011). Although the results for
the 7-networks parcellation generally agreed with the more fine-
grained parcellation, the 7-networks parcellation resulted in 3
components showing high spatial similarity with the default
network template. However, differential roles have been reported
for subsystems of the default network when access to semantic
memory is required (Smallwood et al. 2021). Specifically, the
dorsal medial subsystem of the default network (“Default B” in
the 17-networks parcellation scheme) has been shown to broadly
overlap with a left-lateralized temporal-frontal semantic network
(Lambon Ralph et al. 2017; Smallwood et al. 2021). Since we were
interested in the age-dependent interplay of domain-specific and
domain-general networks in semantic cognition, the remaining
analyses were based on the 17-networks parcellation scheme.

Based on the results of the Jaccard index, each thresholded
component map was inclusively masked by the respective resam-
pled template network. We were interested in the effect of age
on the functional connectivity within and between selected net-
works. In a first step, to explore functional connectivity between
networks, we extracted averaged time series across all voxels
within 1 masked component, thus leading to 7 time series per
participant and run. Second, networks were further parcellated
into distinct regions of interest (ROIs) based on peak maxima of
activated clusters. ROIs were created for all peak maxima of a
significant cluster (up to 3 ROIs per cluster) using the MarsBar
toolbox (Brett et al. 2002). To this end, identified clusters were
extracted from the thresholded and masked component maps,
spheres of 5 mm surrounding each maximum coordinate were
created, and, in a last step, both images were combined. In this
way, we ensured that ROIs would only contain voxels that were
included in the group-level statistics. Parcellating the 7 network
components based on strongest correlation peaks led to 126 cor-
tical ROIs per participant and run.

Functional time series were extracted for the 7 ROIs and 126
ROIs parcellation schemes from non-smoothed functional data.
To account for motion artifacts and other signal confounds,
the following denoising pipeline was applied during time series
extraction: 24 realignment parameters (6 motion parameters,
temporal derivatives, and quadratic terms), global signal, and top
5 aCompCor components for white matter and cerebral spinal
fluid, respectively. Censoring included a FD threshold of 0.9 mm
and 18 discrete cosine-basis regressors to account for signal
drifts. All these regressors were combined in a design matrix
and removed from the data in a single step (Hallquist et al.
2013; Lindquist et al. 2019). The denoising strategy was based
on recent recommendations (Mascali et al. 2021) that compared
the performance of different denoising pipelines for analysis
of task-based functional connectivity. Consistent with previous
research on resting-state functional connectivity (Ciric et al. 2017;
Parkes et al. 2018), the authors reported that the inclusion of
global signal in a denoising pipeline markedly reduced global
motion artifacts and led to more comparable results across
conditions in task-based functional connectivity data (Mascali
et al. 2021). Furthermore, time-series were detrended and
demeaned, and functional images were masked with a subject-
specific, resampled gray matter mask before denoising. During
signal extraction for the set of 126 ROIs, the number of voxels
per ROI and participant were extracted. ROIs for which >15% of

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac387/6747069 by M

PI C
ognitive and Brain Science user on 11 O

ctober 2022



Sandra Martin et al. | 5

participants did not show any signal coverage were excluded. The
resulting 121 ROIs were used for the remaining analyses.

Functional connectivity matrices
We applied correlational psychophysiological interaction anal-
yses (cPPI; Fornito et al. 2012) to obtain connectivity terms
that describe task-related interactions between our networks
and regions of interest. In contrast to traditional PPI analyses,
cPPI results in undirected, symmetrical connectivity matrices
that are based on pairwise partial correlations between ROIs.
We calculated cPPI for our contrast of interest semantic
fluency > counting, separately for the 7-networks and 121-ROIs
parcellations. In brief, the deconvolved time series for each ROI
was multiplied with the task time course from the first-level GLM
design matrix and convolved with a canonical HRF to form a PPI
term. Pairwise partial correlations were estimated between PPI
terms of 2 regions while controlling for the observed BOLD signal
in both regions, the original task regressor, and average in-scanner
head motion (mean FD). Connectivity matrices were calculated
for each run separately and then averaged, resulting in a 7 × 7
and 121 × 121 correlation matrix per participant. Subsequently,
correlation coefficients were Fisher-transformed to z values.

Network measures
Within- and between-network functional connectivity
Within- and between-network functional connectivity were
explored for the 7-networks and 121-ROIs connectivity matrices
in both age groups. Using the connectivity matrices with 7
networks allowed us to investigate the coupling and decoupling
between task-relevant networks, whereas the more fine-grained
parcellation provided additional insights into the coupling
of regions within distinct networks. All subsequent network
measures were based on the 121-ROIs connectivity matrices. For
analyses of within- and between-network functional connectivity,
full matrices including positive and negative correlation weights
were used.

Brain system segregation
We calculated global segregation as previously implemented by
Chan and colleagues (Chan et al. 2014, 2021; Wig 2017), using
the unthresholded, weighted connectivity matrices. In line with
previous work on functional connectivity in healthy aging (Chong
et al. 2019; Chan et al. 2021), we excluded negative correlations
from segregation and integration analyses by setting them to
zero. Excluding negative correlations has been shown to improve
the reliability of graph measures (Wang et al. 2011) and to help
avoid interpretational difficulty, for example when it comes to
concepts like shortest paths (Fornito et al. 2016). Building upon the
network parcellation of our ICA analysis, each functional network
was treated as a distinct system, and segregation was computed
as the difference between mean within-system (Zw)and mean
between-system (Zb)correlations divided by mean within-system
correlation as shown in the following equation:

Brain system segregation = Zw − Zb

Zw

A higher ratio score denotes greater separation of functional
systems.

We also calculated segregation values for each functional net-
work individually such that within-system connectivity Zw rep-
resents the mean of all edges (correlations) between pairwise
nodes that belong to the same network and between-system

connectivity Zb reflects the mean of all edges between nodes of
the respective network and all other nodes.

Edge filtering
Most graph-theoretical measures require some form of filtering to
obtain a sparse graph that is more likely to represent true func-
tional connectivity than a maximally dense graph as produced
by a correlation matrix (Fornito et al. 2016). Although threshold-
based filtering methods like proportional or absolute thresholding
are commonly applied in network neuroscience, they are driven by
an arbitrary choice of the respective threshold and suffer from low
reliability (Luppi and Stamatakis 2021). To avoid these pitfalls and
based on recent research on the reliability of graph construction
in neuroscience (Jiang et al. 2021; Luppi and Stamatakis 2021),
we calculated the orthogonalized minimum spanning tree (OMST;
Dimitriadis et al. 2017) on the weighted functional connectivity
matrices. Apart from its high reliability, the OMST has several
advantages compared with commonly applied threshold-based
methods of graph construction: It adheres to the intrinsic topo-
logical structure of the brain network by resulting in a fully con-
nected, weighted graph and offers a data-driven method of indi-
vidualized network construction accounting for each individual’s
optimal state of economic wiring in terms of cost and efficiency.
In contrast to the original minimum spanning tree (MST), the
OMST filters connectivity networks until the highest global cost
efficiency (GCE) of a graph is reached while including both strong
and weak connections and preserving the same mean degree
across groups.

The OMST was calculated in 3 steps as described by Dimitriadis
et al. (2017): (i) the MST of a graph is defined; (ii) the corresponding
edges of the MST are removed from the original graph by setting
edge weights to 0; (iii) steps (i) and (ii) are repeated until the
GCE of the graph is optimized. GCE is defined as the global
efficiency minus cost, where cost corresponds to the total weights
of the selected edges of the OMST divided by the sum of the
edges of the original fully weighted graph (Bassett et al. 2009).
The final OMST is constructed by combining all the removed,
nonoverlapping MSTs. To show that the OMST indeed results in
higher GCE than other filtering methods, we compared the GCE
for OMST, MST, and a method of proportional thresholding where
we used a common range of 5–20% strongest edge weights of a
graph (Supplementary Fig. S4, see online supplementary material
for a color version of this figure). To avoid differences in graph
measures caused by the number of nodes in a graph, we excluded
all nodes where at least 1 participant had no signal during con-
struction of matrices. This resulted in a 104 × 104 matrix per
participant, which was used for construction of OMST and all
subsequent measures.

Brain system integration
We calculated global efficiency as a measure of system-wide
integration. It is defined as the average of the inverse shortest
path length between all pairs of nodes in a graph and is thus a
measure of efficient signal transmission (Latora and Marchiori
2001; Rubinov and Sporns 2010).

Global efficiency = 1
N (N − 1)

∑

i �=j∈G

1
Li,j

Global efficiency was based on the individual OMSTs using the
reciprocal edge weights to obtain a distance matrix where high
weights signify short paths between nodes.
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Global network hubs
We identified hubs via the normalized participation coefficient
(PC; Pedersen et al. 2020). The PC provides insight into the
functional role of a node. Specifically, it evaluates whether
a node mainly interacts with nodes from its community or
multiple communities of a network (Guimerà and Nunes
Amaral 2005). In network neuroscience, PC has been applied to
define nodes that are important for communication between
communities (connector hubs) and nodes that are central to
the communication within communities (provincial hubs; Cohen
and D’Esposito 2016; Bertolero et al. 2017, 2018). Recently, it has
been shown that the conventional measure of PC is strongly
influenced by the size and connectedness of its community
leading to a reduced interpretational value of this graph measure
(Pedersen et al. 2020). Thus, a normalized version of the PC has
been introduced that accounts for these differences in real-world
networks while preserving its meaning though the comparison
with null models. It is calculated similarly to the original PC as
1 minus the ratio between the degree k of node i with nodes in
its community m and the degree of nodei with all other nodes
in the network. However, a normalization factor is added by
subtracting the median degree of this node in a series of random
networks:

Normalized PC = 1 −
√√√√B0

∑

m∈M

(
ki(m) − ki(m)rand

ki

)2

We calculated 100 random networks for each node. Connector
hubs were then defined as nodes with a PC value of at least 1SD
above the mean in each age group.

Statistical analyses
Age-related changes for within- and between-network
functional connectivity
To assess differences between age groups for within- and
between-network connectivity, we ran 2-sample t-tests for each
edge of the 7-network and 121-ROIs connectivity matrices within
the Network-Based Statistics toolbox (NBS; Zalesky et al. 2010).
NBS applies cluster-based thresholding to correct for multiple
comparisons using permutation testing. In contrast to more
conventional procedures for controlling the family-wise error
rate, such as the false discovery rate, NBS considers connected
components in networks (graphs), which makes it especially
suited for network statistics. We set an initial cluster-forming
threshold at P < 0.01 (1-sided test; t = 2.35) and an FWE-corrected
significance threshold at P < 0.025 (2 comparisons) with 10,000
permutations. Mean-centered covariates per participant for the
average in-scanner head motion and mean response time were
included in each model. Average head motion was defined as
the mean FD based on the calculation of the root mean square
deviation of the relative transformation matrices (Jenkinson et al.
2002).

Age-related changes for network measures of segregation
and integration
Linear mixed-effects models were set up to examine how the
dependent variables brain system segregation, individual network
segregation, global efficiency, and nodal participation coefficient
were predicted by age group. We included in-scanner head motion
(mean FD) as covariate and a random intercept for participants.

Models were calculated as follows:

Network measure = β0 + β1Age + β2Motion + (
1|Subject

) + ε

Significance values were obtained by likelihood-ratio tests of
the full model with the effect in question against the model
without the effect in question.

Association between network measures and cognitive
performance
For those network measures that showed differences between
young and older adults, we further examined their association
with participants’ cognitive performance for the in-scanner task
and the neuropsychological test battery. Analyses were performed
using mixed-effects models with a logistic regression for accuracy
data due to their binomial nature and a linear regression for
log-transformed response time data. We only analyzed response
times for correct reactions for the semantic fluency task since our
connectivity values were also based on our contrast of interest
semantic fluency > counting. Models contained fixed effects
for the respective mean-centered network measure (between-
network functional connectivity, brain system segregation, indi-
vidual network segregation, and global efficiency) and age group
as well as their interaction term, and random intercepts for par-
ticipants and semantic categories. Furthermore, mean-centered
values of mean FD and education were entered as covariates.
Models were set up as shown in the following equation:

Cognitive measure = β0 + β1Network measure + β2Age

+ β3Network measure × Age + β4Motion

+ β5Education + (
1|Subject

) + (
1|Category

) + ε

where cognitive measure denotes accuracy and response time,
respectively. Significance values were obtained via likelihood-
ratio tests. We applied sum coding (analysis of variance,
ANOVA-style encoding) for all categorical predictors. Results
were corrected for multiple comparisons using the Bonferroni–
Holm method. Where applicable, x2 and adjusted P-values of
significance testing using likelihood-ratio tests are reported. In
addition, standardized effect sizes in the form of ω2

p for linear and
odds ratio (OR) for logistic mixed-effects models are given. Tables
with point estimates (b), 95% confidence intervals (CIs), t-values
for linear mixed-effects models, z-values for logistic mixed-effects
models, and P-values for the fixed effects coefficients are reported
in the supplementary materials for each statistical model.

We performed correlation analyses with the neuropsychologi-
cal tests that had been assessed outside of the scanner. Because
of the collinearity of some neuropsychological tests, we ran an
exploratory factor analysis on the standardized test scores using
maximum likelihood estimation and varimax rotation. Based on
the hypothesis test (X2 = 14.04, P = 0.081), 2 factors with an eigen-
value > 1 were chosen. For subsequent correlations with network
measures, participant factor scores extracted via regression meth-
ods were used.

All statistical models except for NBS were performed using
R 4.1.0 via RStudio (R Core Team 2021) and the package lme4
(Bates et al. 2015). Effect sizes were estimated using the package
parameters (Lüdecke et al. 2020) and effectsize (Ben-Shachar et al.
2020). Results were visualized using the ggplot2 (Wickham 2016)
and ggeffects (Lüdecke 2018) packages. If applicable, post-hoc
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Table 1. Comparison of findings for functional connectivity using different denoising strategies.

Change in methodology
Partition Denoising with GSR Denoising without GSR
7 whole networks • Stronger coupling for older adults

• Stronger decoupling for young adults
• Stronger coupling for older adults

121 ROIs • Stronger coupling for ROIs from different networks for older adults
• Stronger coupling for ROIs within networks for young adults
• Stronger decoupling for ROIs from different networks

NA

Note. ROIs: regions of interest; GSR: global signal regression.

comparisons were applied using the package emmeans (Lenth
2020). The exploratory factor analysis was calculated with the
stats package (R Core Team 2021). OMSTs and all graph theory
measures were calculated in Matlab using the Brain Connectivity
toolbox (Rubinov and Sporns 2010) and publicly available scripts
for OMST and normalized PC. Chord diagrams were generated
with the circlize package (Gu et al. 2014), spring-embedded plots
using the igraph package (Csardi and Nepusz 2006), and force-
directed plots using the ForceAtlas2 algorithm for R available on
Github (https://github.com/analyxcompany/ForceAtlas2).

Additional validation analyses
We included global signal regression in our original analyses since
it has been reported to play an important factor in revealing
aging effects (Ng et al. 2016; Chong et al. 2019) and has recently
been shown to effectively reduce motion-related effects in task-
based functional connectivity data (Mascali et al. 2021). However,
the inclusion of global signal regression remains a controversial
topic since it might lead to the regression of meaningful signal
(Aquino et al. 2020) and can exert differential effects in group-
based comparisons (Murphy and Fox 2017). Due to the underlying
differences in the network architecture of young and older adults,
global signal regression might have impacted our results. We thus
repeated the analysis for within- and between-network functional
connectivity without global signal regression.

The results of comparing both pipelines, with and with-
out global signal regression, are summarized in Table 1, and
Supplementary Fig. S5 (see online supplementary material for
a color version of this figure) shows functional connectivity
results for the 7-networks and 121-ROIs parcellations without
global signal regression. Results show that the denoising without
global signal regression led to a general shift in correlation values
to a more positive range, which is expected due to the mean-
centering of values around zero when global signal regression is
applied. Despite the shift in correlation values, the conclusions of
our findings remained the same: Networks of older adults were
characterized by stronger positive coupling of different cognitive
systems such as default and attention networks or semantic,
control, and attention networks. It is also worth noting that we did
not find significant age differences for the more fine-grained 121-
ROIs parcellation for the pipeline without global signal regression
(Supplementary Fig. S5b, see online supplementary material
for a color version of this figure). This might point to a more
pronounced effect of noise in this pipeline such that potential age
differences in correlation values might be overshadowed by the
greater amount of noise (most likely due to motion) in the signal.

To further investigate the motion dependence of both denoising
pipelines, we calculated quality control–functional connectivity
correlations (QC–FC), a common benchmark in functional con-
nectivity studies (Ciric et al. 2017; Parkes et al. 2018; Power et al.
2018; Aquino et al. 2020). QC–FC is estimated as the correlation

between functional connectivity and mean FD for each edge in a
network and thus quantifies the association between gross head
motion and interindividual variance in functional connectivity
(Aquino et al. 2020). Lower scores denote less corruption through
motion and hence more efficient denoising. We assessed QC–FC
for each parcellation scheme individually. Supplementary Fig. S6
(see online supplementary material for a color version of this
figure) displays the results which are summarized as the percent-
age of significant uncorrected edges and the full distribution of
QC–FC correlations. Compared with the pipeline without global
signal regression, the inclusion of global signal regression shifted
the distribution of QC–FC correlations closer to zero in both
parcellations. Furthermore, global signal regression reduced the
percentage of (uncorrected) QC–FC correlations for the 7 networks
parcellation.

Data and code availability
All behavioral data and raw data of functional connectivity and
graph-theoretical measures are available in a public repository at
https://gitlab.gwdg.de/functionalconnectivityaging/mdn_lang_
networkAnalysis. This repository also holds all self-written code
for analyses and figures for this project. Raw neuroimaging data
are protected under the General Data Protection Regulation (EU)
and can only be made available from the authors upon reasonable
request.

Results
The main objective of this study was to investigate age-related
changes in the functional network architecture engaged during
the goal-directed access to semantic memory. For the in-scanner
tasks of overt semantic fluency and counting, we fitted mixed-
effects models accounting for individual variance of participants
and semantic categories via random effects and the difference
in years of education via covariate (Supplementary Table S1).
Likelihood-ratio tests showed that both age groups performed
similarly (x2 = 2.23, P = 0.14, OR = 0.51, 95% CI [0.32, 0.79]) and
generally better for counting than semantic fluency (x2 = 21.59,
P < 0.001, OR = 0.04, 95% CI [0.02, 0.10]; Fig. 2a). Furthermore, we
detected a main effect of difficulty (x2 = 27.47, P < 0.001, OR = 7.43,
95% CI [4.48, 12.33]) and an interaction of difficulty with age (x2

= 10.15, P = 0.001, OR = 0.51, 95% CI [0.34, 0.77]) indicating that
more correct items were produced within each group and that
young adults produced more correct items for easy (OR = 0.36,
P < 0.001, 95% CI [0.21, 0.62]) but not difficult categories (OR = 0.71,
P = 0.13, 95% CI [0.45, 1.10]). For response time, results showed an
interaction between task and age group (x2 = 80.01, P < 0.001, ω2

p =
0.004, 95% CI [0.00, 1.00]) with older adults performing slower than
young adults during the semantic fluency but not the counting
task (Fig. 2b). Furthermore, there was a main effect of difficulty
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Fig. 2. Behavioral results. a) Both groups performed better for counting than semantic fluency. Although there was no effect of age for accuracy in either
task, older adults performed slower than young adults during semantic fluency but not during counting. b) Both groups performed better for easy than
difficult semantic categories, and young adults better than older adults for easy semantic categories. Furthermore, young adults were generally faster
in responding during semantic fluency than older adults, independent of difficulty level. Points show mean response times with 2 standard deviations,
∗P < 0.05.

(x2 = 22.21, P < 0.001, ω2
p = 0.48, 95% CI [0.21, 1.00]) with generally

slower responses for difficult than easy categories.

Goal-directed access to semantic memory
involves default, semantic, and executive control
networks
Using the data-driven method of group spatial independent com-
ponent analysis (ICA) on the whole data set, we defined func-
tional cortical networks for the semantic task. We identified
7 components of interest, which were submitted to 1-sample
t-tests and thresholded controlling the family-wise error (FWE)
rate at peak level with P < 0.05 and a cluster-extent threshold
of 10 voxels. Figure 3 shows the thresholded maps with their
original component number. To determine which cognitive net-
work best described each component, we calculated the Jac-
card similarity coefficient (J) between our thresholded, binarized
components of interest and template masks of common resting-
state (Yeo et al. 2011) and semantic cognition networks (Jackson
2021). Results showed similarity above threshold (J = 0.15) for all
component maps with distinct cognitive networks (Table 2). For
IC06, we found overlap with the frontoparietal control network
C (CONT-C) and default mode network A (DMN-A). Although
spatial similarity was marginally higher for CONT-C than DMN-A
( JControl C − JDefault A = 0.01), we refer to this component as part of
the default system. Significant clusters included classic midline
structures of the core default network (Smallwood et al. 2021)
like posterior cingulate cortex, precuneus, and prefrontal cortex
(Fig. 3). An additional analysis of similarity coefficients between
the component maps and the 7-networks parcellation (Yeo et al.
2011) revealed a stronger similarity with the default network
as a whole for this component (JControl − JDefault = −0.03; see
Supplementary Table S2 for results with the 7-networks parcel-
lation). Furthermore, a second component (IC13) showed strong
similarity with DMN-A. As described in Methods, we combined
the component maps of IC06 and IC13 to assess whether this
would lead to a numerical improvement of J. This was not the

case with J = 0.21 for the combined components, which was below
the similarity coefficient of IC13 alone (J = 0.26). Thus, both com-
ponents represented distinct parts of DMN-A and were hence
included in subsequent analyses. For IC13, we further included
default mode network C (DMN-C), which showed the second
strongest overlap and was represented by significant clusters in
bilateral parahippocampal gyri. Indeed, a combined template of
DMN-A and DMN-C led to a numerical improvement in similarity
compared to DMN-A alone (JDefault A+C − JDefault A = 0.091). Thus,
to gain a comprehensive representation of the default network,
both subsystems were combined and are referred to as default
mode network A + C (DMN-A + C).

Results of Jaccard calculations further revealed the following
networks for the other components: default mode network B
(DMN-B; IC16) with peak activations in bilateral middle temporal
gyri (MTG), inferior and superior frontal gyri (IFG and SFG), and
left angular gyrus (AG); semantic network (SEM; IC18) with strong
overlap with the semantic control network and peak activations
in left IFG, SFG, paracingulate gyrus, posterior superior temporal
gyrus (STG), and AG; frontoparietal control network B (CONT-
B; IC09) with large clusters in bilateral SFG and middle frontal
gyri (MFG), AG, and posterior MTG; ventral attention network B
(VAN-B; IC45) with peak activation in prefrontal cortex including
paracingulate gyrus, bilateral IFG and supramarginal gyri; and
dorsal attention network A (DAN-A; IC52) with large clusters in
bilateral AG, and temporooccipital cortex. Statistical tables with
all significant clusters are reported in Supplementary Table S3.

Stronger coupling of default and executive
systems predicts intact but less efficient
semantic retrieval in older adults
Graphs of task-related connectivity were derived via cPPI for
matrices with 7 and 121 nodes, respectively. We tested for
statistically significant coupling differences between age groups
by means of network-based statistics using permutation testing
while controlling for in-scanner head motion (Fig. 4a). Overall, the
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Fig. 3. ICA-derived networks and their overlap with cognitive networks. T-scores from 1-sided t-tests (FWE-corrected P < 0.05 at peak level) are displayed
for the 7 selected component maps with their respective network label according to spatial similarity analysis. Overlaps between the thresholded
component map and the spatially most similar cognitive network according to the Jaccard index are outlined on the surface of the brain. The areas of
overlap were used for subsequent network analyses.

network of older adults showed reduced decoupling compared
with young adults. Significantly stronger positive coupling was
found in the graphs of older adults for the networks SEM with
VAN-B, CONT-B with VAN-B, and DAN-A with VAN-B. A similar
picture of age-related differences emerged for the more fine-
grained graphs containing 121 nodes. Here, young adults generally
showed stronger positive coupling within individual networks
and between subsystems of the default network and stronger
decoupling between different networks (Supplementary Fig. S7,
see online supplementary material for a color version of this
figure).

We probed the behavioral relevance of the network connection
pairs that showed significant age differences by calculating
mixed-effects models for accuracy and response time data
(Fig. 4b; Supplementary Tables S4 and S5). For accuracy, we
found significant interactions between age and between-network

connectivity for VAN-B with DMN-A + C (x2 = 12.39, P < 0.001,
OR = 1.57, 95% CI [1.22, 2.01]) and DAN-A (x2 = 14.18, P < 0.001,
OR = 0.64, 95% CI [0.51, 0.81]). Predicting response time revealed
significant interactions between age and between-network
connectivity for SEM with DMN-A (x2 = 90.61, P < 0.001, ω2

p = 0.01,
95% CI [0.01, 1.00]) and VAN-B (x2 = 25.75, P < 0.001, ω2

p = 0.02, 95%
CI [0.01, 1.00]), and for DAN-A with DMN-B (x2 = 51.76, P < 0.001,
ω2

p = 0.008, 95% CI [0.01, 1.00]) and VAN-B (x2 = 28.81, P < 0.001, ω2
p

= 0.004, 95% CI [0.00, 1.00]). For older adults, increased coupling
between default and attention networks predicted high but less
efficient performance, whereas increased coupling of SEM and
VAN-B and between both attention systems (DAN-A and VAN-B)
was associated with faster responses. A different picture emerged
in young adults, where stronger coupling between default and
executive systems predicted faster but poorer performance,
whereas increased connectivity between DAN-A and VAN-B was
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Table 2. Jaccard indices for independent components and cognitive networks.

IC06 IC09 IC13 IC16 IC18 IC45 IC52

Frontoparietal control A 0.054 0.133 0.032 0.013 0.151 0.083 0.109
Frontoparietal control B 0.091 0.210 0.028 0.073 0.125 0.050 0.018
Frontoparietal control C 0.168 0.020 0.066 0.010 0.010 0.028 0.044
Default A 0.154 0.089 0.255 0.149 0.040 0.054 0.019
Default B 0.039 0.069 0.031 0.263 0.082 0.098 0.010
Default C 0.014 0.010 0.122 0.008 0.026 0.001 0.020
Dorsal attention A 0.051 0.041 0.062 0.015 0.054 0.003 0.180
Dorsal attention B 0.008 0.038 0.006 0.006 0.071 0.053 0.123
Limbic A 0.000 0.001 0.002 0.014 0.002 0.002 0.011
Limbic B 0.001 0.007 0.015 0.004 0.009 0.005 0.002
Ventral attention A 0.042 0.012 0.023 0.015 0.033 0.124 0.065
Ventral attention B 0.014 0.074 0.001 0.031 0.059 0.195 0.039
Somatomotor A 0.022 0.052 0.000 0.039 0.036 0.029 0.028
Somatomotor B 0.000 0.016 0.038 0.009 0.033 0.011 0.015
Temporal parietal 0.001 0.029 0.014 0.118 0.023 0.035 0.034
Central visual 0.022 0.006 0.006 0.038 0.011 0.004 0.123
Peripheral visual 0.025 0.009 0.074 0.020 0.038 0.034 0.037
General semantic cognition 0.032 0.030 0.072 0.194 0.201 0.092 0.050
Semantic control 0.012 0.036 0.012 0.067 0.153 0.091 0.027

Note. The selected network labels for the respective independent components are shown in bold, whereas all cognitive networks that showed a higher
similarity coefficient than J = 0.15 are shown in italics.

Fig. 4. Functional coupling between task-relevant networks in young and older adults and their behavioral relevance. a) Chord diagrams display
significant results of functional coupling between ICA-derived networks. Connectivity values are partial correlations. The color intensity and width of
a connection indicate its correlational strength. Higher z values indicate positive coupling and negative values indicate decoupling between networks.
Chord diagrams of each age group are based on cPPI-derived significance values, whereas age differences were assessed using permutation testing
in network-based statistics (cluster-forming threshold P = 0.01, FWE-corrected significance threshold P = 0.025 with 10,000 permutations). b) Network
connections that showed significant age differences were probed for their behavioral relevance. Plots show significant 2-way interactions between age
and the respective network pair for accuracy and response time data. Connectivity values were mean-centered for interaction analyses. Results were
corrected for multiple comparisons using the Bonferroni–Holm method at P = 0.05. VAN, ventral attention network; DAN, dorsal attention network.
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associated with better and faster reactions. These results suggest
that both age groups showed distinct connectivity profiles, with
older adults generally profiting from increased coupling between
different cognitive systems and the opposite pattern for young
adults.

Reduced segregation and higher integration of
task-relevant networks is associated with better
and more efficient performance in older adults
Next, we investigated brain system segregation and integration
to get a better understanding of age-related differences in whole-
brain dynamics (Fig. 5a). Segregation quantifies the presence of
densely connected regions that form distinct subnetworks or
communities in a global brain network (Fig. 5b). Results of a
linear mixed-effects model for global brain system segregation
revealed a significant effect of age (x2 = 11.74, P < 0.001, ω2

p =
0.24, 95% CI [0.07, 1.00]) with young adults exhibiting stronger
segregation than older adults (Fig. 5c; Supplementary Table S6).
Examining the predictive value of segregation for in-scanner per-
formance and neuropsychological measures revealed significant
interactions between age and segregation for accuracy (x2 = 9.36,
P = 0.002, OR = 0.62, 95% CI [0.46, 0.84]), response time (x2 = 64.92,
P < 0.001, ω2

p = 0.02, 95% CI [0.01, 1.00]), and a significant corre-
lation of segregation with executive functions in young adults
(r = 0.45, P = 0.013). For all interactions, increasing levels of segre-
gation predicted better and faster performance in young adults.
In contrast, increasing brain-wide segregation had no effect on
accuracy but predicted faster responses in older adults (Fig. 5c;
Supplementary Table S7).

We used the measure of global efficiency to assess network
integration. A linear mixed-effects model indicated higher global
efficiency for young adults (x2 = 21.43, P < 0.001, ω2

p = 0.38,
95% CI [0.18, 1.00]); Fig. 5d; Supplementary Table S8). Efficiency
values were then entered into regression models to assess their
predictive value. Results showed a significant main effect of global
efficiency for accuracy (x2 = 8.81, P = 0.003, OR = 1.27, 95% CI [1.08,
1.48]) and a significant interaction with age for response time
(x2 = 38.07, P < 0.001, ω2

p = 0.006, 95% CI [0.00, 1.00]). Although
increasing system-wide efficiency was generally associated
with better performance, it also predicted faster performance
in older adults but slower responses in young adults (Fig. 5d;
Supplementary Table S9).

Brain system segregation predicts age-related
differences in behavior as a function of network
type
We next examined whether segregation differed between
networks. Previous research showed that networks exhibit
differences in their patterns of age-related changes in segregation
(Chan et al. 2014). Although these studies focused on a broad
distinction of sensorimotor and cognitive association net-
works, we investigated segregation and its behavioral relevance
for each network individually to explore age-accompanied
differences as a function of system type. Overall, results
showed that all networks were less segregated in older than
young adults (x2 = 47.32, P < 0.001, ω2

p = 0.11, 95% CI [0.07,
1.00]; Fig. 6a; Supplementary Table S10). However, networks’
increasing segregation differed in their behavioral relevance
(Supplementary Table S11). For accuracy (Fig. 6b), we detected
significant interactions between age and network segregation
for DMN-B (x2 = 5.05, P = 0.025, OR = 0.69, 95%CI [0.50, 0.95]) and
VAN-B (x2 = 18.03, P < 0.001, OR = 0.46, 95% CI [0.32, 0.65]). For
response time (Fig. 6c), results showed significant interactions

with age and the networks DMN-A (x2 = 74.78, P < 0.001, ω2
p =

0.02, 95% CI [0.01, 1.00]), CONT-B (x2 = 16.37, P < 0.001, ω2
p = 0.008,

95% CI [0.00, 1.00]), and DAN-A (x2 = 79.79, P < 0.001, ω2
p = 0.02,

95% CI [0.01, 1.00]). Overall, stronger segregation of different
systems was associated with better and faster performance for
young adults and poorer and slower reactions in older adults.
Only increasing segregation of DMN-A predicted slower reactions
in young adults, which might point to a different role of this
system in semantic cognition. We also explored the relationship of
network segregation with neuropsychological measures (Fig. 6d).
Results revealed a significant positive correlation of segregation
in the VAN-B with executive measures in young adults (r = 0.4,
P = 0.03) and a negative correlation of DMN-B with semantic
memory in older adults (r = −0.38, P = 0.045).

In summary, exploring brain system integration and segrega-
tion in a semantic task revealed age-specific dynamics where
young adults clearly profit from a stronger modular network
organization whereas increasing integration improves efficiency
only in the aging brain.

Stronger system-wide integration of brain
networks in older adults is facilitated by
additional connector hubs in frontal and
temporal regions
An important characteristic of large-scale brain organization is
the presence of regions, or nodes, that play an important role
in facilitating communication between communities of a net-
work. These nodes, commonly referred to as connector hubs, are
defined by a high number of connections (edges) diversely dis-
tributed across communities (Bertolero et al. 2017). Previous work
has highlighted their crucial role for integrative processing in
resting- and task-state networks (Cohen and D’Esposito 2016). We
explored the existence of connector hubs via the normalized par-
ticipation coefficient (PC; Pedersen et al. 2020). Results revealed
connector hubs in bilateral frontal, parietal, and temporal regions
in both age groups (Fig. 7a; Supplementary Tables S12 and S13).
Notably, there were multiple nodes from the subsystems of the
default network and CONT-B identified as connector hubs in the
bilateral regions of the inferior parietal lobe and AG. Furthermore,
both age groups had connector hubs in the right MTG and MFG. In
older adults, additional connector hubs were found in the left SFG,
pre-SMA, and frontal pole. A linear model revealed nodes with
stronger PC only in the graphs of older adults: in the frontal pole
and pre-SMA, which were also identified as connector hubs, STG,
and bilateral fusiform gyri (Fig. 7b; Supplementary Table S14).

Discussion
The neural bases of cognitive aging remain poorly understood.
It is especially debated how age-related neural reorganization
impacts cognition. A better understanding of the neural resources
that help to maintain cognitive functions and counteract decline
would be mandatory to design efficient treatment and training
protocols. In the present study, we approached this unresolved
issue by investigating the functional connectome of young and
older adults in semantic cognition, a key domain of human cog-
nition largely preserved in healthy aging. Our results demon-
strate a reconfigured network architecture with age even when
word retrieval abilities remain intact. Overall, networks showed
increased integration of task-negative and task-positive networks
with age, which manifested as increased coupling between func-
tional connectivity networks, reduced segregation of global brain
systems, and a larger number of connector hubs in brain graphs

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac387/6747069 by M

PI C
ognitive and Brain Science user on 11 O

ctober 2022



12 | Cerebral Cortex, 2022

Fig. 5. Age-related differences in whole-brain segregation and integration and their behavioral relevance. a) For each participant, a task-related brain
network graph was constructed using 121 nodes. The nodes were based on significant global and local peak maxima of the 7 networks derived from
the ICA (see Supplementary Table S3 for exact locations of nodes). b) Spring-embedded graphs depicting age differences in the modular organization
of the brain. Graphs are based on average connectivity in each age group. Stronger segregation is reflected by higher within- and lower between-
network correlations. In comparison, young adults show stronger segregation than older adults for most networks. For visualization purposes, graphs
are displayed at 5% graph density. c) Brain-wide system segregation was higher for young adults and had distinct effects on behavior for each age
group with young adults profiting from increasing segregation. d) A different picture emerged for global efficiency. Global efficiency was calculated
for individual orthogonal minimum spanning trees (OMST), which were based on weighted correlation matrices. The graphs of young adults showed
stronger global efficiency than older adults. While increasing global efficiency was associated with better performance in both age groups, it predicted
slower performance in young and faster performance in older adults. Note that segregation and global efficiency values were mean-centered for analyses
with behavior.
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Fig. 6. Segregation of individual networks is associated with distinct behavior of older and young adults as a function of system type. a) Individual
networks’ segregation values by age. All networks showed stronger segregation in young adults. b) Generalized linear mixed-effects models for accuracy
revealed significant interactions with age and network segregation for 2 systems, whereas c) linear mixed-effects models for response time showed
significant interactions for 3 networks. For most networks, increasing segregation was associated with better and faster performance in young adults
and worse and slower reactions in older adults. d) Significant correlations between network segregation and neuropsychological measures. For young
adults, we detected a positive correlation of increasing segregation of VAN-B with executive functions, whereas for older adults, a negative correlation of
increasing segregation of DMN-B with semantic memory was found. Note that segregation and global efficiency values were mean-centered for analyses
with behavior. VAN, ventral attention network; DAN, dorsal attention network.

of older adults. Associating these network profiles with behavior
revealed intact, albeit less efficient, performance for more inte-
grated systems in older adults. These findings shed new light
on the frequently reported pattern of declining brain system
segregation with age and its impact on cognition (Chan et al. 2014;
Geerligs et al. 2014). Our results indicate a compensatory role of
increased brain system integration but also reveal its limitations
in terms of economical processing.

Using task-based fMRI data and group spatial ICA, we char-
acterized 7 higher-order large-scale functional networks relevant
to semantic word retrieval. These included default, semantic,
frontoparietal control, and attention networks. Notably, our anal-
ysis detected 2 networks associated with semantic processing: a
network component that showed strong activity in frontal regions
that have been attributed to semantic control processes (Jackson
2021) and another component overlapping with the subnetwork
DMN-B (Yeo et al. 2011), which has been proposed to facilitate
access to semantic knowledge (Smallwood et al. 2021). Thus, these
2 semantic sub-networks appear to represent complementary
aspects of semantic cognition. Moreover, in line with our previous
work (Martin et al. 2022), we detected default and cognitive control
systems, lending support to the notion that networks that have

been characterized as anticorrelated during resting-state become
functionally integrated for successful task processing when con-
trolled access to semantic memory is required (Krieger-Redwood
et al. 2016). Indeed, exploring task-based functional connectiv-
ity showed strong positive coupling between distinct cognitive
networks in both age groups. Two subnetworks of the default
network, DMN-A and DMN-B, were strongly coupled with the fron-
toparietal control network within each group. This finding agrees
with accumulating evidence that the default network integrates
with control and executive resources during goal-directed task
processing (Krieger-Redwood et al. 2016), especially when complex
behavior is supported by knowledge (Wang et al. 2021), and thus
enables flexible cognition (Smallwood et al. 2021).

Examining age-related differences in network coupling
revealed additional integration of distinct networks with age.
Older adults showed stronger positive coupling of SEM, CONT-
B, and DAN-A with VAN-B relative to young adults, suggesting
an increased cognitive demand during semantic processing. In
contrast, networks of young adults displayed stronger decoupling
of default with attention and semantic control networks. Previous
work indicates that young adults can benefit from a more
integrated brain organization in situations of high task demand to
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Fig. 7. Topology of network hubs in young and older adults. a) The normalized participation coefficient (PC) was calculated for individual orthogonal
minimum spanning trees (OMST). Graphs display the PC of each node for the average OMST in each age group (top). For visualization purposes, the
strongest 5% of connections are shown. Stronger PC values are reflected by color and node size. The higher the PC, the more a node is connected with
nodes from other communities. The node with the highest PC value in each age group is extracted and displayed with its neighboring nodes colored by
community (middle). Note that these connector hubs are connected to many different communities. Connector hubs were defined in each age group
via PC values at least 1SD above the mean. In both groups, connector hubs were detected in frontal, parietal, and temporal regions (bottom). b) A
linear model with age as predictor revealed nodes with stronger PC only in older adults. The top and middle graphs were plotted using the ForceAtlas2
algorithm. The force-directed layout causes nodes of the same community to cluster together and diversely connected hubs (connector hubs) to appear
in the center of the graph.

facilitate information flow across components (Vatansever et al.
2015; Cohen and D’Esposito 2016; Zhang et al. 2020). Our results
transfer this observation to the aging brain and demonstrate
increased crosstalk between networks with age. Importantly,
when we associated the differences in network coupling with
behavior, we found that enhanced coupling of different cognitive
systems like default and attention networks was associated with
consistently high but less efficient performance in older adults.
Consistent with results from different cognitive domains (Gallen
et al. 2016; Adnan et al. 2019; Crowell et al. 2020; Deng et al. 2021),
we demonstrate that enhanced network integration with age is
linked to high accuracy but at the cost of efficiency. Although such
reorganization helps older adults to maintain cognitive flexibility,
it might not be the most efficient form of wiring.

Our findings are also in line with the recently proposed default-
executive coupling hypothesis of aging (DECHA; Turner and
Spreng 2015; Spreng and Turner 2019). According to DECHA, the
age-related increase in the coupling of default and executive
networks parallels the decline of cognitive control functions.
Older adults rely more on their greater or preserved semantic

knowledge, which, depending on the cognitive demands of a
task or situation, helps to maintain stable performance or might
even lead to a performance advantage (Spreng and Turner
2019). Here, we show that in a semantic word retrieval task
with a high cognitive control demand, older adults show indeed
increased coupling of default and executive networks. Although
this enhanced coupling helps older adults to maintain stable
performance, it leads to less efficient processing. This finding
further supports the notion that the flexibility in the goal-directed
coupling of executive and default resources decreases with age
(Spreng and Turner 2019).

We applied graph theory to further explore age-accompanied
changes in the network architecture. Our results revealed global
decreases in segregation and efficiency with age. The reduction
of segregation in older adults is in line with previous work from
resting-state (Chan et al. 2014; Sala-Llonch et al. 2014; Geerligs
et al. 2015) and task-based studies (Geerligs et al. 2014; Gallen
et al. 2016; Crowell et al. 2020), as well as longitudinal investiga-
tions (Betzel et al. 2014; Cao et al. 2014; Chong et al. 2019), and sug-
gests that aging is associated with a reduced ability for specialized
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processing within highly connected clusters (Rubinov and Sporns
2010). This was confirmed by our results on segregation of each
individual network where young adults generally showed stronger
segregation.

In terms of global efficiency, most studies reported lower global
efficiency in older adults (Sala-Llonch et al. 2014; Chong et al.
2019; Gonzalez-Burgos et al. 2021), although others have also
reported no changes or even increases with age (Cao et al. 2014;
Chan et al. 2014; Song et al. 2014; Geerligs et al. 2015). These dis-
crepancies might stem from methodological considerations such
as the number of nodes in a brain graph since global efficiency is
based on the length of its edges (Zalesky et al. 2010) or different
thresholding methods of connectivity matrices like the commonly
applied proportional thresholding, which has been shown to intro-
duce spurious correlations and inflate group-related differences
in graph metrics (van den Heuvel et al. 2017). To avoid these pit-
falls, our calculation of global efficiency was based on the recently
developed OMST (Dimitriadis et al. 2017), a data-driven approach
of individualized graph construction with high reliability (Jiang
et al. 2021; Luppi and Stamatakis 2021).

Reduced global efficiency implies higher wiring cost and a
less efficient information flow among distributed networks of the
global brain system (Bullmore and Sporns 2012). This is especially
relevant for the processing of complex cognitive functions like
semantic word retrieval, which require the integration of distinct
networks, as revealed by our functional connectivity analyses.
At the neurobiological level, these changes have been associated
with reduced functional connectivity of long-range connections
in older adults (Sala-Llonch et al. 2014). Thus, even though func-
tional networks become more integrated with age, potentially due
to stronger activation of more but less specialized nodes, the effi-
cient information transfer between networks is impaired leading
to slower processing in aging. This observation may represent an
overall decline of cognitive attention systems in the aging brain,
reflected in slower responses with similar task accuracy, which
was already evident at the behavioral level in our data.

Additional evidence for this interpretation stems from the
larger number of connector hubs in older adults. In the young
brain, an increase of connector hubs has been linked to enhanced
task demands to facilitate integration across different networks
and enable better task performance (Bertolero et al. 2018; Zhang
et al. 2020). Resting-state studies in healthy aging also reported
more connector hubs, indicating a reduced distinctiveness of
network-specific nodes (Geerligs et al. 2015; Chan et al. 2017;
Chong et al. 2019). Our work confirms these findings during task
processing and allows an interpretation in light of the semantic
nature of our task. Nodes with a higher participation coefficient
in older adults were located in frontal and temporal regions and
associated with CONT-B, DAN-A, and SEM networks. This result
underlines the enhanced cognitive demand during semantic word
retrieval with age and provides a mechanistic explanation for
the frequently reported pattern of over-activation of prefrontal
control regions during demanding task processing in older adults
(Davis et al. 2008). A reduced selectivity in activation of network
nodes and hence an over-recruitment of less specialized brain
regions leads to a decline in efficient neural processing between
brain regions, and this process might form the basis of neural
dedifferentiation in aging (Chan et al. 2017; Chong et al. 2019). Its
effect on cognition, aberrant, or compensatory, depends on the
neurocognitive requirements of a task.

Exploring the topology of task-relevant neural networks as
a function of cognitive performance allowed us to directly link
observed age-related differences with behavior. Results showed

that young adults strongly capitalized on a more segregated sys-
tem during task processing in the form of faster and better
performance. In contrast, increasing whole-brain segregation pre-
dicted faster but not better performance in older adults, whereas
increasing global efficiency predicted better performance across
groups but faster responses only in older adults. These findings
have important implications for current theories on the behav-
ioral impact of network reorganization in aging. Although a less
selective and more integrated network organization might not be
the most efficient system in terms of processing speed, it enables
older adults to maintain high performance. However, stronger
integration does not automatically imply a more efficient system
as evident by a generally reduced global efficiency in brain graphs
of older adults and a predicted faster response in a more efficient
system. Our findings lend support to a compensatory mecha-
nism of age-accompanied reconfiguration in network topologies.
Importantly, they also reveal the limitations of such compen-
satory reorganization processes and demonstrate that a youth-
like network architecture in terms of balanced integration and
segregation is associated with more economical processing.
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Facilitatory stimulation of the pre-SMA in healthy
aging has distinct effects on task-based activity
and connectivity
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Semantic cognition is central to communication
and our understanding of the world. It is usually
well preserved in healthy aging. However, seman-
tic control processes, which guide semantic access
and retrieval, decline with age. The present study
explored the potential of intermittent theta burst
stimulation (iTBS) to enhance semantic cognition in
healthy middle-aged to older adults. Using an in-
dividualized stimulation approach, we applied iTBS
to the pre-supplementary motor area (pre-SMA) and
assessed task-specific effects on semantic judg-
ments in functional neuroimaging. We found in-
creased activation after effective relative to sham
stimulation only for the semantic task in visual and
dorsal attention networks. Further, iTBS increased
functional connectivity in domain-general executive
networks. Notably, stimulation-induced changes in
activation and connectivity related differently to be-
havior: While increased activation of the parietal
dorsal attention network was linked to poorer se-
mantic performance, its enhanced coupling with
the pre-SMA was associated with more efficient se-
mantic processing. Our findings indicate differ-
ential effects of iTBS on activity and connectivity.
We show that iTBS modulates networks in a task-
dependent manner and generates remote network
effects. Stimulating the pre-SMA was linked to more
efficient but not better performance, indicating a
role in domain-general semantic control processes
distinct to domain-specific semantic control.
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Introduction
Aging is accompanied by a myriad of cognitive changes.
While the decline of executive functions, such as
working memory, attention, and inhibitory control, and
episodic memory are hallmarks of cognitive aging (Hed-
den and Gabrieli, 2004), functions that rely on the ac-
quired knowledge about the world (semantic memory),

such as language and creativity, usually remain well
preserved and are affected by more subtle changes
in healthy aging, for example increasing word retrieval
problems (Henderson and Wright, 2016; Verhaeghen,
2003; Burke and Shafto, 2004). Moreover, increasing
age has been associated with difficulties in language
comprehension on the sentence and discourse level
when processing becomes cognitively demanding, for
instance through length, complexity, or ambiguity (Goral
et al., 2011; Kemper et al., 2004; Obler et al., 1991). In
light of the intact semantic knowledge system in healthy
older adults, these changes have been attributed to de-
clining cognitive control functions, which contribute to
successful semantic processing when, for example, am-
biguities need to be resolved or irrelevant information
needs to be inhibited (DeDe and Knilans, 2016). In line
with this notion, a recent study demonstrated an age-
related decline of semantic selection processes, such
as inhibiting irrelevant semantic associations, but not
semantic representation and retrieval abilities (Hoffman,
2018). Notably, semantic selection was strongly corre-
lated with non-semantic executive functions, underlining
the role of domain-general cognitive control in semantic
processing.

On the neural level, semantic cognition activates a
mainly left-lateralized, widespread neural network in
young adults, including frontal, temporal, and parietal
regions (Binder et al., 2009; Jackson, 2021; Noonan
et al., 2013). This network is thought to consist of dis-
tinct, yet interacting elements: a subnetwork for seman-
tic representation and a subnetwork for semantic con-
trol (Lambon Ralph et al., 2017). Importantly, semantic
control might be multidimensional as well, consisting of
domain-specific semantic control, which subserves pro-
cesses such as the controlled retrieval of less salient
conceptual features, and domain-general control, which
supports general selection and inhibition mechanisms
(Hoffman, 2018). This notion is supported by the obser-
vation that brain regions that are active in tasks with high
semantic control demands partially overlap with areas
of the multiple-demand network (MDN), which refers to
a set of frontoparietal brain regions involved in top-down
cognitive control across domains (Duncan, 2010; Fe-
dorenko et al., 2013).
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In the aging brain, semantic cognition is characterized
by a shift of the functional network architecture, which is
reflected by increased activity of the MDN (for a review,
see Hoffman and Morcom, 2018) and greater functional
connectivity between domain-general networks such as
the default mode network (DMN) and dorsal and ventral
attention networks during semantic processing (Mar-
tin et al., 2022). This shift has also been described
as reduced specialization of “core” processing areas of
a task and increased neural dedifferentiation (Grady,
2012; Park et al., 2004). The behavioral relevance
of these neural changes remains a point of debate.
While the best preservation of cognitive functions has
been associated with a youth-like pattern (Cabeza et al.,
2018; Grady, 2012; Spreng et al., 2010), some changes
might represent unsuccessful or attempted compensa-
tion (Hoffman and Morcom, 2018) whereas other reor-
ganization processes have been linked to preserved,
albeit less efficient semantic processing (Martin et al.,
2022).

Non-invasive brain stimulation (NIBS) techniques are
recognized as a promising approach to counteract age-
related cognitive decline and to promote successful ag-
ing. Similar to the use of NIBS to boost neuropsycho-
logical rehabilitation after disruption of function due to
stroke, these techniques might have the potential to
support preservation of cognitive functions in patholog-
ical but also healthy aging through modulation of corti-
cal excitability and the enhancement of neuroplasticity
(Hartwigsen, 2018, 2015; Siebner et al., 2009). While
there are some first promising results from different
cognitive domains (for reviews, see Booth et al., 2022;
Goldthorpe et al., 2020; Hsu et al., 2015), particularly
when NIBS is coupled with training interventions, vari-
ability remains high and some studies find no benefi-
cial effect of stimulation (e.g., Antonenko et al., 2022).
Further insight into the potential of NIBS in aging can
be gained by investigating the effect of stimulation on
neural activity and functional connectivity. Neuroimag-
ing results can help interpreting behavioral effects and
might even be observed in the absence of a stimulation-
induced behavioral change (Abellaneda-Pérez et al.,
2022). In the domain of semantic cognition, only a few
studies explored the effect of electrical stimulation at the
neural level. These studies associated improved per-
formance with a reduction of age-related upregulation
in activity (Holland et al., 2011; Meinzer et al., 2013)
and increases in functional connectivity between task-
relevant regions of interest in the prefrontal cortex (Hol-
land et al., 2016). So far, no study explored the potential
of transcranial magnetic stimulation (TMS) to modulate
age-related changes in semantic cognition on the be-
havioral and neural level.

Some studies investigated the potential of patterned
repetitive transcranial magnetic stimulation to enhance
performance in different cognitive tasks in healthy young
brains (for a review, see Demeter, 2016). These stud-
ies report improved task performance after intermit-

tent theta burst stimulation (iTBS; Huang et al., 2005).
Fewer studies explored the modulatory effects of TBS
on cognition in aging brains (Debarnot et al., 2015;
Legon et al., 2016; Vidal-Piñeiro et al., 2014; Hermiller
et al., 2022). The results of these studies are hetero-
geneous, and only one study found improved mem-
ory performance after iTBS (Debarnot et al., 2015),
whereas others revealed changes in task-related activ-
ity and connectivity only (Vidal-Piñeiro et al., 2014) or
non-specific effects of inhibitory stimulation (Hermiller
et al., 2022). A better understanding of the modulatory
effects of TBS at the neural level may help to increase
the efficiency of network stimulation in aging brains.
Moreover, such network approaches may be more pow-
erful than conventional modulatory applications that tar-
get specific brain regions within specialized networks
(e.g., Hartwigsen and Volz, 2021).

The goal of the present study was to explore the po-
tential of iTBS to enhance semantic cognition in healthy
middle-aged to older adults. We applied effective and
sham iTBS to the pre-supplementary motor area (pre-
SMA) and subsequently assessed the effect of stimu-
lation using task-based functional magnetic resonance
imaging (fMRI). The pre-SMA was selected as tar-
get area since it has been associated with the se-
mantic control network and the domain-general MDN
(Fedorenko et al., 2013; Jackson, 2021) emphasizing
its role in mediating cognitive control across domains.
Moreover, the pre-SMA contributes more to seman-
tic processing in older relative to young adults (Martin
et al., 2022) and represents a hub region in task-related
functional networks of older adults, facilitating integra-
tive processing (Martin et al., 2022). Using a seman-
tic judgment task with varying cognitive demands and
a tone judgment task as non-verbal control task, we hy-
pothesized that iTBS might show stronger effects on the
more demanding semantic condition. Further, compar-
ing the effects of the tone with the semantic judgment
task, allowed us disentangling task-specific effects of
iTBS from general effects on control processes. Finally,
we aimed to elucidate how stimulation-induced changes
in task-related activity and functional connectivity relate
to behavioral modulation.

Results
We implemented a single-blind, cross-over study design
with three task-based functional magnetic resonance
imaging (fMRI) sessions per participant (14 female; M
= 61.6, SD = 7.64, range: 45–74 years; Figure 1A).
During each session, participants completed a seman-
tic judgment task and a tone judgment task (Figure 1B
& C). Using the fMRI data from the first session, we ap-
plied an individualized stimulation approach where the
stimulation coordinates of each participant were based
on activation patterns within a pre-defined mask of the
pre-supplementary motor area (pre-SMA; Ruan et al.,
2018). During the second and third session, partici-
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Figure 1. Experimental Design. (A) Participants completed three sessions: a baseline fMRI session and two iTBS + fMRI
sessions with effective and sham stimulation. (B) Per fMRI session, two task runs were completed. Blocks of the semantic
judgment and the tone judgment task were interspersed with rest blocks. (C) Example trials for the semantic and the tone
judgment task are shown. Participants heard a short phrase or a sequence of two tones. At the offset of the auditory stimulus,
a picture of an object or an arrow appeared. Participants indicated via button press whether auditory and visual stimuli matched.
RMT: resting motor threshold, WPM: word-picture matching, FPM: feature-picture matching.

pants then received once effective and once sham iTBS
over the pre-SMA prior to fMRI (Figure 1A).

Behavioral results

We were interested in potential effects of iTBS on be-
havioral performance (Figure 2A and B). To this end,
we fitted mixed-effects models for accuracy and reac-
tion time data of the in-scanner tasks of word-picture,
feature-picture, and tone-picture matching. For accu-
racy, the three-way interaction between session, con-
dition, and congruency was not significant (x2= 7.83,
p = 0.099). However, we detected a significant inter-
action between condition and congruency (x2= 53.15,
p < 0.001) and session and condition (x2= 21.8, p <
0.001; Figure 2C). Post-hoc tests showed that incongru-
ent items had higher accuracy in all conditions. How-
ever, the difference between congruent and incongru-
ent items was only significant for word-picture match-
ing (WPM; OR = 0.38, p < 0.001) and feature-picture
matching (FPM; OR = 0.31, p < 0.001). For session

and condition, post-hoc tests showed a significant dif-
ference in accuracy only for the tone judgment task,
such that participants performed generally better after
the baseline session (active iTBS > baseline: OR =
0.41, p < 0.001; sham iTBS > baseline: OR = 0.57, p
= 0.002). Moreover, we found main effects of condition
(x2= 279.34, p < 0.001) and congruency (x2= 77.32, p <
0.001) but not of session (x2= 2.79, p = 0.25). Post-hoc
tests revealed generally better performance for word-
picture than feature-picture matching (OR = 5.77, p <
0.001) and the tone-picture matching condition (OR =
3.55, p < 0.001; Figure 2C). For congruency, accuracy
was higher for incongruent than congruent items (OR =
0.5, p < 0.001).

For reaction time, results showed a significant interac-
tion of session with condition (x2= 44.4, p < 0.001; Fig-
ure 2D). Post-hoc tests revealed that reaction times im-
proved for all three conditions after the baseline ses-
sion (all p < 0.01). However, there was no difference
in reaction time between effective and sham iTBS ses-
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Figure 2. Behavioral results. (A) Results for accuracy and reaction time for each condition at each session. Boxplots show
median and 1.5 x interquartile ranges. Half-violin plots display distribution and dotted lines show changes of mean values across
sessions. (B) Individual data for effect of stimulation sessions on accuracy and reaction time for each condition. (C) and (D)
display significant results of mixed-effects regression for accuracy and reaction time. Cong: congruent items, Incong: incongruent
items.
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sions. Results also showed a significant interaction
between condition and congruency (x2= 306.53, p <
0.001). Post-hoc comparisons revealed that for FPM,
incongruent items were faster (p = 0.034), while for
tone-picture matching, congruent items were faster (p
< 0.001). Further, we found a significant effect of age
on reaction time with reaction times generally increas-
ing with age (x2= 9.4, p = 0.002). Full results of both
models are shown in Table S4.

Univariate functional MRI data
The effect of conditions at baseline

For the semantic judgment task, we found a large left-
lateralized fronto-temporo-parieto-occipital network with
additional activation in the right hemisphere (Figure
3A; Table S5). An additional cluster spanned the pre-
SMA. The control task of tone judgment revealed a bi-
lateral network with clusters in frontal, temporal, pari-
etal, and occipital regions (Figure 3A; Table S5). We
were interested in the difference in brain activation be-
tween the semantic judgment and the tone judgment
task. The contrast semantic judgment > tone judg-
ment activated a mainly left-lateralized fronto-temporal
network for semantic processing encompassing left in-
ferior frontal gyrus, left anterior, middle, and superior
temporal gyri, and bilateral fusiform gyri (Figure 3B;
Table S5). Further, precuneus, superior frontal gyrus,
and frontal pole were activated. The opposite contrast,
tone judgment > semantic judgment, activated a mainly
right-lateralized network including the right frontal pole,
middle frontal gyrus, precuneus, and the right angular
gyrus. Moreover, we found small clusters in left supe-
rior frontal gyrus and left inferior frontal lobe (Figure 3B;
Table S5).

We also investigated the effect of semantic process-
ing demand by comparing both conditions within the
semantic judgment task with each other. For WPM,
stronger activation in bilateral superior temporal gyri
was detected when compared with FPM (Table S5).
For the opposite contrast, FPM > WPM, results showed
stronger activity in a left-lateralized network including in-
ferior frontal gyrus, middle temporal gyrus, inferior pari-
etal lobe, and superior frontal gyrus with supplementary
motor area.

iTBS increases task-specific activity for semantic judg-
ments in distributed networks

To explore the effect of iTBS and potential interactions
with conditions, we contrasted effective and sham stim-
ulation sessions. Results only revealed stronger acti-
vation after effective compared with sham sessions and
only for the semantic judgment task. For semantic judg-
ment > rest, we found stronger activation in the right
posterior angular gyrus, superior temporal gyrus, mid-
dle occipital gyrus, and a cluster in left superior pari-
etal lobe (SPL) and bilateral cuneus (Figure 4A; Table
1). This was mirrored by effects for the individual con-
ditions of semantic judgment, WPM and FPM. For both

conditions, a cluster spanning left SPL and right cuneus
was found (Table 1). Further, for FPM, an additional
cluster in right angular gyrus as well as occipital and
fusiform gyrus was detected. For the contrast semantic
judgment > tone judgment, results showed a significant
cluster in bilateral lingual gyri and left middle occipital
gyrus (Figure 4B; Table 1).

Increased activity after iTBS is associated with poorer se-
mantic performance

We correlated the difference in percent signal change
(PSC; effective > sham iTBS) for the stimulation site
pre-SMA and for cluster peaks that showed an effect
of stimulation (n = 6; Table 1) with the difference in be-
havior. For the pre-SMA, we found that accuracy for the
tone judgment task was negatively correlated with PSC
(r = -0.36, p = 0.05) such that smaller PSC for effective
relative to sham iTBS was associated with higher ac-
curacy during the effective relative to the sham session
(Figure 4C). Further, results showed a negative corre-
lation for accuracy of the semantic judgment task with
a cluster in left dorsal SPL (r = -0.37, p = 0.047; Fig-
ure 4D) which had shown stronger activity for semantic
judgment > rest after effective relative to sham iTBS. We
found that less PSC for effective compared with sham
iTBS was associated with higher accuracy for effective
relative to sham iTBS. This effect was further specified
through the FPM condition which showed the same pat-
tern for the cluster in left ventral SPL (r = -0.37, p =
0.044; Figure 4E). We did not detect any significant cor-
relations for reaction time.

The effect of iTBS on subject-specific functional regions
of interest (ROIs) for language processing

We extracted PSC for effective and sham iTBS sessions
in the 25 subject-specific functional ROIs that were de-
fined using a group-constrained subject-specific parcel-
lation approach. We were interested in an effect of iTBS
on PSC of the different conditions. To this end, we fit-
ted linear mixed-effects models with predictors for ses-
sion and PSC. We did not find any significant interaction
between functional ROIs and session. Supplementary
Figures S4-6 show the individual PSC values for both
stimulation sessions for each ROI.

Effects of iTBS on functional connectivity (general-
ized PPIs)
Based on the activation patterns from the comparison
of effective and sham iTBS, we conducted generalized
psychophysiological interaction (gPPI) analyses for the
significant cluster peaks. We asked whether and how
effective iTBS generates changes in functional connec-
tivity for these task-specific regions. Moreover, we were
interested in a relationship between stimulation-induced
changes in functional connectivity and behavior and as-
sessed such associations for the PPI connectivity be-
tween the pre-SMA and significant cluster peaks from
univariate results.
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Figure 3. Univariate activation results for experimental conditions during baseline session. (A) shows results for each
experimental task against rest (implicit baseline) while (B) displays the results when both tasks are contrasted ahainst each other.
Results are FWE-corrected at peak level p < 0.05 with a minimal cluster size k = 10 voxels.

iTBS reduces task-specific connectivity for parietal areas
during semantic processing

One-sample t-tests for the difference in functional con-
nectivity between effective and sham stimulation re-
vealed significant changes for three seed regions: the
left dorsal and ventral SPL and the right cuneus. For
all regions, we found reduced whole-brain connectivity
after effective relative to sham iTBS for the contrast se-
mantic judgment > tone judgment (Figure 5A; Table S6).
The dorsal SPL showed reduced coupling with a clus-
ter in the left middle frontal gyrus and frontal pole after
effective stimulation. For the seed in the more ventral
left SPL, we found a similar cluster in the frontal pole,
which also extended into the anterior cingulate gyrus.
Moreover, the ventral left SPL was negatively coupled
with a cluster in the right superior frontal gyrus and
pre-SMA, a region in the anterior left SPL, and the left
precentral gyrus and superior frontal gyrus. The right
cuneus showed greater decoupling with a cluster in the
right frontal pole and middle frontal gyrus. To further

explore the interaction effect, we investigated the dif-
ference between effective and sham stimulation for the
contrasts semantic judgment > rest and tone judgment
> rest for the seed regions. Results showed that signifi-
cant whole-brain decoupling for the cuneus was mainly
driven by increased coupling of these regions during the
tone judgment task (Figure S7). In the ventral SPL,
a cluster in the left frontal pole was related to greater
decoupling in the semantic and greater coupling in the
control task after effective iTBS, thus dissociating both
tasks (Figure S7).

Areas of decreased coupling belong to domain-general
networks

We were interested in the representative networks of
these stimulation-induced changes in functional con-
nectivity. To this end, we plotted binary maps of the
significant gPPI results together with a common seven-
networks parcellation based on intrinsic functional con-
nectivity (Yeo et al., 2011). Figure 5B shows the overlap
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Figure 4. Effect of stimulation on brain activation. After effective stimulation, stronger activation was found for (A) semantic
judgment > rest and for (B) semantic judgment > tone judgment. We then extracted percent signal change (PSC) for significant
clusters and correlated the difference in PSC between effective and sham sessions with the difference in behavior between
effective and sham sessions. (C) For ∆ of accuracy of tone judgment, a negative correlation with the difference in PSC in our
stimulation site pre-SMA was detected. (D) and (E): For ∆ of accuracy of semantic judgment, and more specifically the FPM
condition, a negative correlation with the difference in PSC in the left superior parietal lobe (SPL) was detected. fMRI results are
thresholded at p < 0.05 at peak level and FWE-corrected at p < 0.05 at cluster level.

Table 1. Significant clusters for effective > sham iTBS

Anatomical structure Hemisphere k t x y z

Word-picture matching >Rest
Cuneus R 1387 3.87 9.52 -68.78 21.50
Superior parietal lobe L 3.78 -22.82 -71.26 54.50
Superior occipital gyrus R 3.59 21.96 -83.70 18.75

Feature-picture matching >Rest
Angular gyrus, posterior division R 672 4.11 54.30 -63.80 18.75
Middle occipital cortex R 3.94 44.35 -83.70 7.75
Fusiform gyrus R 3.36 29.42 -68.78 -6.00
Superior parietal lobe L 763 3.45 -22.82 -71.26 46.25
Cuneus L 3.43 -7.90 -86.19 40.75
Cuneus R 3.32 7.03 -86.19 29.75

Semantic judgment >Rest
Middle occipital gyrus R 726 4.03 44.35 -81.22 7.75
Angular gyrus, posterior division R 3.64 54.30 -63.80 18.75
Superior temporal gyrus R 3.49 54.30 -28.97 5.00
Superior parietal lobe L 959 3.86 -22.82 -71.26 54.50
Middle occipital gyrus L 3.53 -25.31 -81.22 32.50
Superior parietal lobe L 3.50 -22.82 -71.26 46.25

Semantic judgment >Tone judgment
Lingual gyrus L 1083 4.04 -17.85 -68.78 2.25
Middle occipital gyrus L 3.78 -17.85 -91.17 18.75
Lingual gyrus R 3.55 12.01 -71.26 2.25

Note. Results are thresholded at p < 0.05 at peak level and FWE-corrected at p < 0.05 at cluster level.
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of the clusters that showed reduced coupling with the
respective networks. Clusters in the frontal pole were
associated with the DMN and in the middle frontal gyrus
with the fronto-parietal control network. Furthermore,
decoupled clusters from the ventral SPL were mainly
linked to the ventral attention network, and in pre-central
gyrus to the sensorimotor network.

Decreased coupling after iTBS is associated with slower
semantic performance under effortful conditions

The change in functional connectivity between pre-SMA
and left ventral SPL was associated with a change in be-
havior after effective stimulation (Figure 6). More specif-
ically, a negative correlation (r = -0.49, p = 0.006) indi-
cated that reactions for the FPM condition were slower
the more those two regions were decoupled after effec-
tive iTBS.

Discussion
In light of global population aging and the associated
increase in age-related diseases, new interventions are
needed to counteract cognitive decline and promote
successful aging. NIBS is increasingly recognized
as a promising tool to boost cognitive functions in
older adults. However, to design effective treatment
protocols, a better understanding of the neural mech-
anisms of NIBS is mandatory. In particular, it remains
unclear whether NIBS-induced improvements may be
underpinned by decreases or increases in task-related
activity and connectivity, or both. Here, we explored
the effect of effective relative to sham iTBS over the
pre-SMA on the behavioral and neural level during
a semantic judgment task and a non-verbal control
task. In the absence of direct stimulation-induced
changes at the behavioral level, we found significant
modulation of task-related activity and connectivity.
These changes differed in their functional relevance
at the behavioral level. Our main results were as
follows: iTBS led to higher activation during semantic
processing at remote regions in posterior areas (pos-
terior temporal cortex, parietal, and occipital lobe).
In contrast, functional connectivity results revealed
reduced whole-brain connectivity of these upregulated
areas during semantic processing, but increased
connectivity for the tone judgment task. Strikingly,
TMS-induced changes on activation and functional
connectivity had differential effects on behavior. While
upregulated regions were associated with poorer
semantic performance, increasing connectivity between
the stimulation site and a cluster in the dorsal attention
network was linked to faster performance in the most
demanding semantic condition. Overall, our findings
indicate disparate effects of iTBS on activation and
connectivity. Further, we show that iTBS modulates
networks in a task-dependent manner and generates
effects at regions remote to the stimulation site. Finally,
our results shed new light on the role of the pre-SMA

in domain-general and semantic control processes,
indicating that the pre-SMA supports executive aspects
of semantic control.

Higher-order cognitive networks for semantic judgment
and tone judgment that overlap in the pre-SMA

Our task paradigm revealed two widespread functional
networks for semantic judgment and non-verbal tone
judgment, which overlapped in sensory-motor systems
for auditory, visual and motoric processing. We de-
lineated specific networks by contrasting both tasks
with each other. Semantic processing activated a left-
lateralized fronto-temporal network, which aligns well
with previous investigations and meta-analyses on se-
mantic cognition (Binder et al., 2009; Jackson, 2021;
Lambon Ralph et al., 2017). Notably, the network con-
tained core areas of semantic representation, such as
the bilateral temporal poles, but also semantic control,
including the left inferior frontal gyrus and posterior mid-
dle temporal gyrus. Moreover, in contrast to the tone
judgment task, semantic processing activated bilateral
middle and posterior fusiform gyri. While the anterior
fusiform gyrus (anterior temporal lobe) has been rec-
ognized as a key area of semantic processing (Chiou
et al., 2018; Lambon Ralph et al., 2017; Mion et al.,
2010), less work has focused on the role of the middle
and posterior fusiform gyrus in semantic cognition. Al-
though famous for the recognition of faces (Kanwisher
et al., 1997), objects in general (Grill-Spector, 2003),
and visual words (Dehaene and Cohen, 2011), a recent
investigation on the spatiotemporal dynamics of seman-
tic processing linked the middle fusiform gyrus to lexi-
cal semantics, thus suggesting a role behind early vi-
sual processes (Forseth et al., 2018). This notion aligns
with our results which showed pronounced bilateral ac-
tivation of this region compared with the tone judgment
task.

Contrasting both conditions of semantic judgment,
WPM and FPM, with each other, confirmed the in-
tended modulation of cognitive demand: While WPM
showed relative greater activation in left language per-
ception areas, which points to a focus on phonological
and lexical processing during this task, FPM activated
core regions of semantic but also domain-general
control, indicating increased task demand. The tone
judgment task, on the other hand, activated a fronto-
parietal network, which was based on regions of the
frontoparietal control and the dorsal attention network.
Notably, all the activated regions during tone judgment
also fell within the MDN, confirming the non-verbal,
high executive demand of this task.

iTBS does not produce direct behavioral changes at the
group level

Although univariate fMRI results from the baseline
session demonstrated the contribution of the pre-SMA
to the semantic judgment and the non-verbal tone
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Figure 5. Functional connectivity results for cluster peaks that showed stronger activation after effective iTBS. (A) Three
seeds showed stronger decoupling after effective relative to sham stimulation for the contrast semantic judgment > tone judgment.
(B) Binary PPI activation maps plotted onto a seven-networks functional connectivity parcellation (Yeo et al., 2011). fMRI results
are thresholded at p < 0.01 at peak level and FWE-corrected at p < 0.05 at cluster level.

judgment task, applying effective iTBS to the pre-SMA
did not produce behavioral changes relative to the
sham session. This result was unexpected. However,
we are not the first study to observe stimulation-induced
effects on the neural but not behavioral level in healthy
older adults (Vidal-Piñeiro et al., 2014). The lack
of a behavioral effect might be due to a number of
reasons. First, in contrast to most studies, we included
a separate baseline session, during which participants
practiced and performed the tasks. This led to a notable
improvement across all conditions, most strongly in the
unfamiliar tone judgment task. Hence, familiarity with
the paradigm after the baseline session might have
aggravated the chance of observing a stimulation effect.
This factor should be considered in future studies as
well. Second, the effect of offline stimulation might
not have been strong enough to induce behavioral
changes. Although we took great care to minimize the
time between end of stimulation and begin of task-
based fMRI, this might have impeded the observation
of a behavioral effect. Third, the applied tasks might
have been too easy for our group of participants to
observe a facilitatory effect of iTBS. This is the first
study to use TBS in healthy aging in the domain of
semantic cognition. While previous work successfully
applied anodal transcranial direct current stimulation

to the left inferior frontal gyrus and motor cortex to
enhance semantic word retrieval in healthy older adults
(Holland et al., 2011; Meinzer et al., 2013, 2014), the
facilitatory stimulation of an executive control hub that
contributes to semantic control processes might not
have been critical when task performance is already
high. Nonetheless, though unintended, the absence of
a stimulation effect on cognition allowed us to interpret
alterations on the neural level without the confounds
of behavioral changes that might make them harder to
interpret otherwise (Blankenburg et al., 2010; Feredoes
et al., 2011). Moreover, the behavioral relevance of
these changes was demonstrated in the significant
correlations between activity or connectivity increases
and behavioral modulation.

iTBS over the pre-SMA increases activity in a
widespread network of visual processing and cognitive
control

Effective iTBS generated greater activity than sham
iTBS in posterior regions but not at the stimulation site.
This finding was surprising but is in line with the increas-
ingly reported observation that TBS produces remote
effects on activation in neural networks (Cárdenas-
Morales et al., 2011; Halko et al., 2014; Vidal-Piñeiro
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Figure 6. Relationship between stimulation-induced
changes in functional connectivity and behavior. Reduced
coupling of pre-SMA and left ventral SPL after effective iTBS
was associated with slower reaction times (RT) during the
feature-picture matching (FPM) condition.

et al., 2014). Notably, stimulation-induced changes in
the BOLD signal were task-specific. Specifically, we
found that activity only changed when participants were
performing the semantic judgment task but not at rest or
during the tone judgment task. For semantic judgments
compared with the control task, increased activation
was observed in the occipital cortex, including bilateral
lingual gyri and medial occipital lobe, which indicates
a specific role of these regions in the semantic but
not the tone judgment task. This notion is supported
by emerging evidence from healthy but also patient
studies that the occipital cortex, particularly the lingual
gyrus, supports language-related and verbal memory
tasks (Amedi et al., 2004; Heath et al., 2012; Kim et al.,
2011; Palejwala et al., 2021). Thus, the increased
activation of these regions mediated by the pre-SMA
might suggest a top-down control on visual processing
regions in a task-specific manner. Moreover, comparing
the semantic judgment task to rest revealed greater
activation of clusters in left superior and right inferior
parietal lobes apart from clusters in the occipital lobe
after effective stimulation. These results were mainly
driven by the FPM condition. All cluster peaks fell
within the dorsal attention network, which illustrates
a functional connection with focused attention, which
is likely semantic-specific (Cristescu et al., 2006; Kim
et al., 2011; Mahon and Caramazza, 2010).

iTBS decreases functional connectivity within cognitive
control networks during semantic processing

We gained further insight into the role of the upregu-
lated regions through functional connectivity analyses.
Results showed reduced whole-brain functional con-
nectivity for semantic judgments in dorsal and ventral
SPL and the right cuneus after effective iTBS. The
seeds in the left SPL showed strongest decoupling with
a large prefrontal cluster in the left ventral attention
network, while the cuneus was negatively coupled

with a prefrontal cluster in the right control network.
Moreover, we found reduced connectivity of the ventral
SPL with our stimulation site, the pre-SMA, the parietal
dorsal attention network, and a cluster in the frontal
pole associated with the DMN. Notably, apart from the
cluster in the DMN, all cluster peaks fell within regions
of the MDN. Moreover, the majority of significant clus-
ters were driven by increased connectivity for the tone
judgment task. This finding demonstrates the potential
of iTBS to generate task-specific changes in functional
network coupling, which is line with previous reports
(Halko et al., 2014; Singh et al., 2020; Vidal-Piñeiro
et al., 2014). Further, it suggests a TMS-induced
modulation of whole-brain functional connectivity in
response to executive and attention demands and
supports the notion of the pre-SMA as an organizing
hub in the MDN, coordinating the interaction of different
cognitive control regions (Camilleri et al., 2018).

iTBS-induced changes in activation and functional con-
nectivity relate differently to behavior

Relating TMS-induced changes on activation and func-
tional connectivity with the cognitive performance al-
lowed us to explore the behavioral relevance of these
network changes (Figure 7). While it might seem sur-
prising that the increased activation of the parietal dor-
sal attention network was linked to poorer accuracy in
the semantic judgment task, this finding corroborates
the notion that the most efficient task processing is
associated with little or no additional functional activa-
tion apart from task-specific core regions. This is a
common observation in neurocognitive aging, where in-
creased activation and reduced deactivation of domain-
general regions have been associated with neural ineffi-
ciency, leading to poorer performance across a range of
cognitive domains (Cabeza et al., 2018; Spreng et al.,
2010). Moreover, better and more efficient behav-
ioral performance due to training-induced activation de-
creases has been reported in healthy participants (Abel
et al., 2012; Horner and Henson, 2008) as well as post-
stroke chronic aphasia (Abel et al., 2015; Richter et al.,
2008). In our study, task performance was high and re-
mained unchanged after iTBS, indicating a stimulation-
induced upregulation of remote cognitive control re-
gions that were not necessary for efficient task process-
ing. Though speculative, a different pattern might have
emerged through the perturbation of a domain-specific
node in the semantic network. A recent study from our
group found a partially compensatory upregulation of
MDN regions when the domain-specific semantic net-
work was disrupted (Hartwigsen et al., 2017).

Notably, increasing functional connectivity between our
stimulation site and the upregulated cluster in the pari-
etal dorsal attention network after iTBS was associ-
ated with faster reaction times in the most demanding
semantic condition. This result strengthens the idea
of a task-specific coupling of cognitive control regions
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Figure 7. Facilitatory stimulation of a hub of the domain-
general multiple-demand network enhanced coupling with
other cognitive control networks distal to the stimulation site.
This was linked to poorer performance but increased effi-
ciency during semantic processing in a group of middle-aged
to older adults.

that have been linked to executive components of se-
mantic processing (Kim et al., 2011; Mahon and Cara-
mazza, 2010) and language processing in general (Ger-
anmayeh et al., 2014; Sliwinska et al., 2017). Here, we
demonstrate that such coupling can enhance the pro-
cessing efficiency when cognitive demands are high but
not the cognitive process per se in form of improved ac-
curacy.

In conclusion, our results agree with the proposal of
an adaptive recruitment of domain-general resources
to support language processing, which, however, are
less efficient than the specialized domain-specific
network (Hartwigsen, 2018). Moreover, we add a new
perspective to the role of the MDN in semantic cogni-
tion: Our findings indicate that the pre-SMA supports
semantic-specific processes through the upregulation
of and coupling with cognitive control regions that have
been linked to semantic cognition. Importantly, the
pre-SMA did not upregulate or couple with regions of
the domain-specific network of semantic control, such
as the left inferior frontal gyrus and posterior middle
temporal gyrus. Together with our findings of a positive
effect of pre-SMA stimulation on task efficiency but
not accuracy, we propose a multidimensionality of
semantic control on the neural level beyond the inferior
prefrontal cortex (Badre et al., 2005; Nagel et al.,
2008), consisting of a fronto-temporal domain-specific
and a fronto-parietal domain-general semantic control
network. Stimulating the pre-SMA with facilitatory TMS
modulated domain-general semantic control but had no
effect on domain-specific control regions.

Limitations and outlook

It should be noted that we did not find an effect of stim-
ulation on the subject-specific functional ROIs for lan-
guage processing. Though unexpected, this aligns with
our other results, indicating a modulation of domain-
general and not language-specific regions through iTBS

over the pre-SMA. A future comparison of modulation
of domain-general and domain-specific semantic con-
trol hubs could help to fully explore the contribution of
both control systems to semantic cognition. Moreover,
we cannot rule out the possibility that our results are
limited to the aging brain. Although we tested a rela-
tively wide range from middle to older age, future stud-
ies should consider a group of young participants for
comparison.

Materials and Methods
Participants
A total of 30 healthy middle-aged to older adults (14 fe-
male; M = 61.6, SD = 7.64, range: 45–74 years) par-
ticipated in the experiment. Inclusion criteria were na-
tive German speaker, right-handedness, normal hear-
ing, normal or corrected-to-normal vision, no history
of neurological or psychiatric conditions, and no con-
traindication to magnetic resonance imaging or rTMS.
Participants were also screened for cognitive impair-
ments using the Mini-Mental State Examination (Fol-
stein et al., 1975; all ≥ 26/30 points). Written informed
consent was obtained from each participant prior to the
experiment. The study was approved by the local ethics
committee of the University of Leipzig and conducted in
accordance with the Declaration of Helsinki.

Experimental Design
Figure 1 displays the experimental procedure. The
study employed a single-blind, cross-over design with
three sessions per participant (Figure 1A). Sessions
were separated by at least one week (mean inter-
session interval: 28.4 days; SD: 51.2) to prevent carry-
over effects of TMS. During the first session, partic-
ipants completed a short training of the experimen-
tal task followed by two runs of a language local-
izer task and two runs of the experimental task. The
second and third session each began with a short
practice of the task, after which participants were ad-
ministered effective or sham iTBS over the pre-SMA.
Participants then completed two runs of the experi-
mental task. The TMS laboratory was situated close
to the MR unit which enabled us to transfer partici-
pants rapidly to the MR scanner after stimulation (mean
time end of stimulation until beginning of functional
scan: 6.6 min). To avoid any interference of move-
ment with the stimulation effect, participants were trans-
ferred in an MR-compatible wheelchair. During func-
tional MRI, all stimuli were presented using the soft-
ware Presentation (version 18.0, Neurobehavioral Sys-
tems, Berkeley, USA, www.neurobs.com). Visual stimuli
were back-projected onto a mirror mounted on the head
coil. Auditory stimuli were played via MR-compatible
in-ear headphones (Sensimetrics, Gloucester, USA,
http://www.sens.com/). At the beginning of each fMRI
session, participants performed a short volume test in
the scanner with one intact passage of the language
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localizer and background scanner noise to make sure
they could understand the stimuli well.

Language Localizer
The language localizer task was adapted from (Scott
et al., 2016). In this task, participants listen to
intact and acoustically degraded passages from Al-
ice in Wonderland. Materials for the degraded pas-
sages as well as the experimental structure were
provided by Evelina Fedorenko (https://evlab.
mit.edu/alice). The intact passages were taken
from the freely available German translation of Alice
in Wonderland (https://www.projekt-gutenberg.
org/carroll/alice/alice.html) and were recorded
by a professional native German female speaker in a
soundproof room. Recordings were then cut using
Praat software (version 6.0.56, https://www.praat.
org) and normalized using Audacity software (version
2.3.2, https://www.audacityteam.org/). In total, 24
intact and 24 acoustically degraded passages were pre-
pared. The language localizer task is constructed as a
block design. Each run consists of six intact and six
degraded passages interspersed with four fixation peri-
ods. Listening passages are each 18 s long and fixation
periods 12 s long, thus resulting in a total length of 4.4
min per run and 8.8 min of the whole task. Participants
were instructed to lie still and quietly listen to the pas-
sages. At the beginning, participants performed a short
volume test in the scanner with one intact trial and back-
ground scanner noise to make sure that they could hear
the stimuli well.

Experimental Paradigm
Two tasks were implemented in the fMRI experiment in
a mixed design: a semantic judgment task with varying
cognitive demand and a non-verbal control task (Fig-
ure 1B). In both tasks, participants were required to de-
cide whether an auditory stimulus matches with a pre-
sented image via yes/no-button press using the index
and middle finger of their left hand. Since the exper-
iment was planned to be also implemented in people
with post-stroke aphasia, the left hand was used in all
participants to avoid potential confounds through hemi-
paresis in the aphasia group. Further, this allowed us
to shift motor activity related to the button press to the
right hemisphere. The order of buttons was counter-
balanced across participants. Tasks were presented in
mini-blocks of four trials per task and blocks were sepa-
rated by rest intervals of 3.75 s (2/3 of all intervals) or 16
s (1/3 of all intervals). Individual trials were 3.5 s long in-
cluding presentation of the auditory stimulus, the object
picture, and button press by the participant. Trials within
blocks were interspersed with jittered inter-stimulus in-
tervals between 2.5 and 7 s. Each run included 88 stim-
uli with 32 items per condition of the semantic judgment
task and 24 items of the control task resulting in a total
length of 13.8 min per run. Participants completed two
runs per session.

Semantic judgment task

The semantic judgment task consisted of a word-picture
matching (WPM) and a feature-picture matching (FPM)
condition, thus varying with respect to the semantic de-
mand of an item (Figure 1C). During both conditions,
participants listened to a short phrase (e.g., “Is a ba-
nana” or “Is sour”) followed by a picture of an object
at the offset of the auditory stimulus. They were then
asked to judge if the auditory phrase and the presented
object match. Stimuli were chosen from eight cate-
gories (four living: birds, fruits, mammals, and vegeta-
bles; four non-living: clothes, furniture, tools, and vehi-
cles) according to German norm data for semantic typ-
icality (Schröder et al., 2012). From each category, 12
members were selected, 2/3 of them representing typi-
cal and 1/3 representing atypical items of the respective
category. Hence, in total, 96 stimuli were developed.
For each item, a feature from available concept prop-
erty norms (Devereux et al., 2014) was chosen so that
within every category, items could be paired up with re-
gard to their grammatical gender and their feature. In
this way, we made sure that every object was introduced
with the appropriate gender through the indefinite article
both in the congruent and incongruent condition in the
auditory stimulus in the WPM condition (“Is a banana”
or “Is a lemon”), thus precluding any syntactic clues on
accuracy. In German, the indefinite article can take two
forms: feminine “eine” and masculine and neutral “ein”.
Accordingly, items with male and neutral gender could
be paired up together and items with female gender
were paired up separately. Further, the arrangement in
pairs allowed us to balance the occurrence and to con-
trol the semantic value of the features. That is, every
feature property was once used as congruent and as in-
congruent. Since item pairs were within categories, we
assured that both congruent and incongruent features
were semantically associated with the items. Through
this approach, we aimed at avoiding any response bias
which could be introduced when an incongruent fea-
ture has a bigger semantic distance than the congruent
feature from the target item. All auditory stimuli were
recorded through the same professional native German
female speaker as in the language localizer. Record-
ings were processed in the same way: They were cut
using Praat and normalized via Audacity software.

Across categories, items were balanced for lexical fre-
quency of words and lexical frequency of features using
the dlexDB database (Heister et al., 2011). There was
no significant difference between frequencies of words
(M = 10.27, SD = 23.65) and features (M = 13.63,
SD = 23.50), t(185) = 0.98, p = .331). Additionally,
items were also balanced across categories for length
in phonemes, length in syllables, and length in seconds
of the audio files of words and features respectively. In
comparison, audio files of words (M = 1.24 s, SD =
0.13) were longer than those of features (M = 1.16 s,
SD = 0.18), t(176) = 3.81, p < .001). We dealt with
this difference in the length of audio files by designing
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the paradigm in a way that pictures of objects only ap-
peared at the offset of each auditory stimulus, thus not
depending the decision-making process on the length
of the audio files. Pictures for stimulus items were taken
from the freely available Bank of Standardized stimuli
(Brodeur et al., 2014, 2010) and the colored picture
set by Moreno-Martínez and Montoro (2012) or bought
through a license of MPI CBS on Shutterstock. Objects
were presented on a white background and all pictures
were cropped to a size of 720 x 540 pixels. Stimuli of
the semantic judgment task were investigated in a pilot
experiment (n = 50) beforehand to confirm the intended
modulation in task demand and to validate name and
feature agreement for each item. Stimuli for the final set
were only chosen if they showed at least 80% agree-
ment for the word-picture and the feature-picture match-
ing conditions.

We developed six individual stimuli lists per participant
(three sessions with two runs each) such that every
item appeared once in every condition across runs and
sessions. Conditions and congruency were balanced
across runs with pairs of congruent and incongruent
stimuli never occurring in the same run. Across partici-
pants and runs, accuracy and congruency of individual
items were pseudorandomized. After balancing proce-
dures, stimuli lists were randomized.

Tone judgment task

The non-verbal control task consisted of sinewave tones
at different frequencies (300–825 Hz), which were pre-
sented in a sequence of two tones (Figure 1C). Tones
in a sequence always had a difference in frequency of
250 Hz. Individual tones were generated using a pure
tone generator in Matlab with the following parameters:
sampling frequency of 16000 Hz, duration of 450 ms,
and fade-in and fade-out duration of 10 ms each. Af-
terwards, tones were paired up using Audacity software
so that each tone once appeared first and once second
in a sequence. An inter-tone interval of 300 ms was in-
cluded in each sequence. Thus, each tone sequence
had a length of 1200 ms which equaled the average
length of all verbal stimuli. In the control task, partici-
pants heard a tone sequence and were asked to match
this with a picture of an arrow pointing diagonally up-
wards or downwards which appeared at the offset of the
auditory stimulus. Like in the semantic judgment task,
participants had to indicate their choice via button press.
Through this process, we aimed at keeping the task as
similar as possible to the semantic judgment task but
without any verbal processing involved.

Magnetic Resonance Imaging
MRI data were collected at a 3T Siemens Magnetom
Skyra scanner (Siemens, Erlangen, Germany) with a
32-channel head coil. For functional scans, a gradient-
echo echo-planar imaging multiband sequence (Fein-
berg et al., 2010) was used with the following parame-
ters: TR: 2000 ms, TE: 22 ms, flip angle: 80°, voxel size:

2.48 x 2.48 x 2.75 mm with a 0.25 mm interslice gap,
FOV: 204 mm, multiband acceleration factor: 3, number
of slices per volume: 60 axial slices with interleaved or-
der covering the whole brain. For the language localizer
task, 266 volumes were acquired. For the experimental
task, a total of 842 volumes per session were acquired.
For distortion correction, field maps (pepolar images)
were obtained at the end of each session (TR: 8000 ms,
TE: 50 ms). Additionally, a high-resolution, T1-weighted
3D volume was obtained from the in-house database if
available and not older than two years or was acquired
after the functional scans on the first session using an
MPRAGE sequence (176 slices, whole-brain coverage,
TR: 2300 ms, TE: 2.98 ms, voxel size: 1 x 1 x 1 mm,
matrix size: 256 x 240 mm, flip angle: 9°).

Intermittent Theta Burst Stimulation
During the second and third session, participants re-
ceived once effective and once sham rTMS prior to fMRI
(Figure 1A). Session order was counterbalanced across
participants. rTMS was delivered using the iTBS stimu-
lation protocol which consists of bursts of three pulses
at 50 Hz given every 200 ms in two second trains, re-
peated every ten seconds over 190 seconds for a total
of 600 pulses (Huang et al., 2005). We chose to use
TBS since its high-frequency protocols have been re-
ported to induce longer lasting after-effects with a dura-
tion of up to one hour (Chung et al., 2016). We used
stereotactic neuronavigation (TMS Navigator, Localite,
Bonn, Germany) based on coregistered individual T1-
weighted images to precisely navigate the coil over the
target area and maintain its location and orientation
throughout the experiment.

iTBS was applied over the pre-SMA. We used an indi-
vidualized stimulation approach where the stimulation
coordinates of each participant were based on activa-
tion patterns within a pre-defined ROI for the experi-
mental task during the first session. To this end, fMRI
data from the first session were preprocessed using fM-
RIPrep 20.2.3 and analyzed using SPM12. A ROI mask
of the pre-SMA based on a freely available probabilistic
cytoarchitectonic map (Ruan et al., 2018) was created,
thresholded at greater 0.3, and binarized. Activation
in individuals’ subject space for the contrast semantic
judgment > rest was then inclusively masked using the
resampled pre-SMA ROI. Significant clusters were iden-
tified after FWE-correction on peak level at p < 0.05.
The global peak of the strongest cluster within the pre-
SMA ROI was identified as the stimulation target in each
participant. Figure S1 displays the individual stimula-
tion sites within the mask. Figure S2 shows the location
of individual stimulation sites with respect to two cog-
nitive networks of interest: general semantic cognition
(Jackson, 2021) and the multiple-demand network (Fe-
dorenko et al., 2013).

iTBS was applied via a MagPro X100 stimulator
(MagVenture, Farum, Denmark) equipped with a pas-
sively cooled MCFB65 figure-of-eight coil. For sham
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stimulation, we used the corresponding placebo coil
(MCF-P-B65), which features the same mechanical out-
line and acoustic noise as the effective coil but provides
an effective field reduction of ~80%. During stimulation,
the handle of the coil was pointed in a posterior direction
(Allen et al., 2018; Taylor et al., 2007; Willacker et al.,
2020). Stimulation intensity was set to 90% of individual
resting motor threshold (RMT), which was determined
during the second session. RMT was defined as the
lowest stimulation intensity producing at least five motor
evoked potentials of ≥ 50 µV in the relaxed first dorsal
interosseous muscle when single-pulse TMS was ap-
plied to the right motor cortex ten times. The overall
application of TMS pulses per sessions was well within
safety limits and the whole procedure was in accor-
dance with the current safety guidelines (Rossi et al.,
2009).

Data Analyses

Behavioral data

Accuracy and reaction time data of each session were
analyzed using mixed-effects models with a logistic re-
gression for accuracy data due to their binary nature
and a linear regression for log-transformed reaction time
data. We only analyzed reaction times for correct re-
sponses. Contrast coding was done via sum coding
where the intercept represents the grand mean across
conditions and the model coefficients represent the dif-
ference between the mean of the respective condition
and the grand mean. Based on the research ques-
tions of this study, session (i.e., baseline, effective or
sham stimulation) and condition (WPM, FPM or tone
judgment) along with their interaction term were always
entered as fixed effects. Next, we used stepwise model
selection to determine the best-fitting model based on
the Akaike Information Criterion (AIC), where a model
was considered meaningfully more informative if it de-
creased the AIC by at least two points (Burnham and
Anderson, 2004). The AIC reduces overfitting by con-
sidering model complexity and simultaneously penaliz-
ing models with more parameters. First, the optimal
random effects structure was assessed; next, which fac-
tors of congruency, stimulation order, age, and task op-
timized the models; and finally, interaction terms were
evaluated. Table S1 displays the model selection pro-
cedure for accuracy data. The optimal model included
fixed effects for session, condition, congruency, and age
as well as a three-way interaction for session, condi-
tion, and congruency, and a random intercept for par-
ticipants (Equation 1). Table S2 displays the model se-
lection procedure for reaction time data. Here, the opti-
mal model included fixed effects for session, condition,
congruency, and age, and interactions between condi-
tion and congruency and session and condition. As ran-
dom effects, the model included by-participant random
intercepts and by-participant random slopes for session
as well as random intercepts for auditory stimuli (Equa-
tion 2). P-values were obtained by likelihood ratio tests

of the full model with the effect in question against the
model without the effect in question. Statistical mod-
els were performed with R (version 4.1.0; Team, 2021)
and the packages lme4 (Bates et al., 2015) for mixed
models and bblme (Bolker and Team, 2022) for model
comparisons. Plots and result tables were generated
using the packages sjPlot (Lüdecke, 2021) and ggef-
fects (Lüdecke, 2018).

Accuracy = β0 +β1Session+β2Condition+
β3Congruency +β4Age+
β5Session×Condition+

β6Session×Congruency+
β7Condition×Congruency+

β8Session×Condition×Congruency+
(1|Subject)+ε

(1)

log(Reaction time) = β0 +β1Session+
β2Condition+β3Congruency +β4Age+

β5Condition×Congruency+
β6Session×Condition+

(1+Session|Subject)+
(1+ |Auditory stimulus)+ε

(2)

Preprocessing of MRI data

Preprocessing of MRI data was performed using fM-
RIPrep 20.2.3 (Esteban et al., 2019) which is based on
Nipype 1.6.1 (Gorgolewski et al., 2011). Preprocessing
steps of functional images included slice-time correc-
tion, realignment, distortion correction, co-registration
of the T1-weighted and functional EPI images, and
normalization. Anatomical images were skull-stripped,
segmented, and normalized to standard space. Images
were normalized to the MNI152NLin6Asym template. A
detailed description of the preprocessing steps is in-
cluded in Supplementary Materials. After preprocess-
ing, functional data were smoothed with an isotropic 5
mm FWHM Gaussian kernel, and analyzed in SPM12
(Wellcome Trust Centre for Neuroimaging) in Matlab
(version R2021a; The MathWorks Inc., Natick, MA).

Whole-brain analyses

Functional MRI data were modelled using the two-step
procedure. At the first level, data were entered into in-
dividual general linear models (GLM) for each session
and participant. For the localizer, the GLM included box-
car regressors convolved with the canonical hemody-
namic response function (HRF) for the task blocks of
the intact and degraded listening passages. Individual
thresholded (gray matter probability > 0.2) gray matter
masks were used as explicit masks. For the experimen-
tal task, regressors for the three conditions and a sepa-
rate regressor for error trials were included in the GLM.
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Individual trials were modelled as stick functions con-
volved with the canonical HRF. To account for condition-
and trial-specific differences in reaction time, the du-
ration of a trial was defined as the length of the audi-
tory stimulus plus the reaction time. For all tasks, mod-
els included regressors of no interest: six motion pa-
rameters and individual regressors for strong volume-
to-volume movement as indicated by values of frame-
wise displacement > 0.7. Further, temporal and spa-
tial derivatives were modelled for each condition, and
a high-pass filter (cutoff 128 s) was applied to remove
low-frequency noise. Contrast images were generated
by estimating contrasts for each condition against rest
and direct contrasts between conditions.

For the experimental task, contrast images were then
entered intro group-level random effects models. For
the first session, one-sample t-tests were computed to
define group activations for the different conditions. To
assess differences in activation between effective and
sham iTBS, contrast images from the sham session
were subtracted from contrast images from the effective
session, and the difference images were then submitted
to random effects models and session effects were es-
timated using one-sample t-tests. For all second-level
analyses, a gray matter mask was applied, which re-
stricted statistical tests to voxels with a gray matter prob-
ability > 0.3 (SPM12 tissue probability map). Results
were thresholded at p < 0.05 at peak level and cor-
rected at cluster level for the family-wise error (FWE)
rate at p < 0.05. Anatomical locations were identified
with the Harvard-Oxford cortical structural atlases dis-
tributed with FSL (https://fsl.fmrib.ox.ac.uk).

To assess the relationship between differences in acti-
vation and differences in behavior due to iTBS, we ex-
tracted PSC for our a-priori defined stimulation site of
pre-SMA and for clusters showing a significant effect of
stimulation (n = 6; see Table 1) using the MarsBar tool-
box (version 0.45; Brett et al., 2002). For the pre-SMA,
PSC was extracted for a cluster centered at each indi-
vidual stimulation site and containing the 10% strongest
activated voxels for the contrast semantic judgment >
rest, which was identical to the contrast used for the
definition of the stimulation site. Data were then en-
tered into correlation analyses where the difference in
PSC for a certain condition was correlated with the dif-
ference in accuracy and reaction time between effective
and sham sessions.

Analysis of subject-specific functional regions of interest

Data from the language localizer task were analyzed
employing the group-constrained subject-specific ap-
proach (Julian et al., 2012). This method allows the
identification of individual functional regions of interest
(fROIs) sensitive to language processing (Fedorenko
et al., 2010), which were then used to characterize re-
sponse profiles in the independent data set of the ex-
perimental task. The definition of fROIs followed the
procedure described by (Fedorenko et al., 2010) and

was done using the spm_ss toolbox (Nieto-Castañón
and Fedorenko, 2012): First, individual activation maps
for our contrast of interest of the localizer task (intact
> acoustically degraded speech) were thresholded at
a voxel-wise false discovery rate (FDR) of q < 0.05 at
whole-brain level (Genovese et al., 2002) and then over-
laid on top of each other. The resulting probabilistic
overlap map displayed how many participants showed
activation at each voxel. Next, the overlap map was
smoothed (5 mm), thresholded at 3 participants (10%;
cf. Fedorenko et al., 2010), and parcellated using a
watershed algorithm (Meyer, 1991). The watershed al-
gorithm resulted in 37 fROIs. Third, only those ROIs
from the parcellation were retained where at least 60%
of participants had any supra-threshold voxels (cf. Fe-
dorenko et al., 2010; Julian et al., 2012). This led to
a final sample of 25 parcels (Figure S3). To confirm
that these parcels were indeed relevant to language
processing, independent of the task, we entered them
in a random-effects group-level analysis using the ex-
perimental task data. Results were calculated for the
contrast language (i.e., WPM + FPM) > rest and FDR-
corrected at q < 0.05. Results showed that all 25 parcels
were significantly stronger activated for the language
task (Table S3). Finally, subject-specific fROIs were
defined as the 10% most active voxels in each partic-
ipant for the localizer contrast intact > degraded speech
within each parcel. Since we were interested in the
potential effect of iTBS on differences in activation in
the language-specific fROIs, we extracted PSC for each
fROI and condition for the experimental task using the
MarsBar toolbox (version 0.45; Brett et al., 2002). The
data were then entered into a linear model with predic-
tors for stimulation type (effective or sham) and fROI
and their interaction term. Post-hoc comparisons were
applied using the package emmeans (Lenth, 2020).

Functional connectivity analysis

We were interested in potential changes in functional
connectivity induced by iTBS. To this end, we con-
ducted psychophysiological interaction (PPI) analyses
using the gPPI toolbox (McLaren et al., 2012). Seed re-
gions were defined for significant global cluster peaks
for the contrast of effective and sham session (n = 6,
cf. Table 1) and for our stimulation site, bilateral pre-
SMA. Binary, resampled masks were created for each
seed by building a spherical ROI with a radius of 10 mm
in MarsBar. Next, for each participant, individual ROIs
were created by extracting the 10% most active voxels
in each seed mask of a given contrast image. For the
seed masks of pre-SMA, we used the contrast seman-
tic judgment task (i.e., WPM + FPM) > rest, which was
the same contrast used to define individual stimulation
coordinates.

For the gPPI, individual regression models were set up
for each ROI and session containing the deconvolved
time series of the first eigenvariate of the BOLD sig-
nal from the respective ROI as the physiological vari-
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able, regressors for the three task conditions and er-
rors as the psychological variable, and the interaction
of both variables as the PPI term. Models were ad-
justed for an omnibus F-test of all task regressors. Sub-
sequently, first-level GLMs were calculated. We were
specifically interested in potential differences between
effective and sham iTBS sessions for the contrast se-
mantic judgment > tone judgment. To this end, contrast
images from the sham session were subtracted from
contrast images from the effective session and the dif-
ference images were submitted to random-effects mod-
els for group analysis. Significant clusters were deter-
mined via one-sample t-tests. A gray matter mask was
applied as described for the univariate analyses. Re-
sults were thresholded at p <0.01 at peak level and
FWE-corrected p <0.05 at cluster level.

We also explored a relationship between stimulation-
induced changes in functional connectivity and behav-
ior. To this end, we extracted pre-SMA-to-ROI PPI con-
nectivity for effective and sham sessions for the contrast
semantic judgment > tone judgment where ROI refers to
the six seed regions described above. We then corre-
lated the difference between effective and sham con-
nectivity for each pre-SMA-ROI pair with the difference
between effective and sham in accuracy and reaction
time.

Data Availability
All behavioral data as well as extracted beta weights
generated or analyzed during this study have been
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analysis code used for this project. Unthresh-
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5 General Discussion

5.1 Summary of Main Findings

The present thesis aimed to advance our understanding of the functional network architecture
in semantic cognition in the young and the aging brain. Exploring semantic processing with
language production and comprehension paradigms and the combination of uni- and multi-
variate fMRI, task-based functional connectivity, and TMS, the presented studies approached
the research questions from a comprehensive perspective and were thus able to demonstrate a
relationship between age-related changes in functional networks and behavioral performance
in semantic cognition.

The first two studies used a semantic word retrieval paradigm to explore age differences in
the organization of task-relevant functional networks. Groups of healthy young and older adults
performed a paced overt semantic fluency task and a counting task as low-level control task in
an fMRI experiment. Study 1 implemented univariate fMRI analyses and psychophysiological
interaction analyses to delineate the functional networks for both tasks and to examine the
functional coupling of the strongest activation peaks for the semantic task relative to the
control task. Results showed that task-specific networks displayed strong overlap with the
domain-general multiple-demand and default-mode system in both age groups. Using task-
based connectivity analyses on the whole brain level and between regions of interest from
both networks, results showed an interaction of the MDN and DMN, which was present across
age groups and specific to the semantic word retrieval task. Notably, the behavioral relevance
of increased coupling within and between networks differed between groups: In young adults,
increased within-network connectivity was associated with faster and better performance,
whereas older adults did not capitalize on strengthened functional connectivity in the same way.
Together, study 1 led to two key findings. First, independent of age, integration between usually
anticorrelated networks increases when controlled access to semantic memory is required
to facilitate goal-directed behavior. Second, older adults do not benefit from task-relevant
network coupling in the same way as young adults, which indicates a reduced efficiency of
neural networks with age (Figure 5.1).

While study 1 explored the role of two task-relevant domain-general systems, the MDN and
DMN, in semantic word retrieval, it remained an open question whether age-related changes to
the network organization on the whole-brain level might have impacted our findings. That is,
do older adults potentially rely on different functional networks during task processing, which
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enables them to maintain high performance? To this end, study 2 of this thesis combined
multivariate ICA with task-based functional connectivity to assess age differences in the
network architecture of semantic cognition. Moreover, we applied graph theoretical measures
of brain system integration and segregation to examine age-related changes to the network
topology and to relate them to our cognitive measures of fluid and crystallized intelligence.
Results from the ICA revealed that task-relevant networks for semantic word retrieval include
default, semantic, attention, and cognitive control networks across age groups. However, we
detected fundamental changes in the coupling of networks with age. Networks of older adults
showed increased integration compared with young adults. In particular, subsystems of the
DMN demonstrated greater connectivity with attention and control networks, which was
associated with preserved, albeit slower semantic processing in older adults. Results from graph
theoretical measures underlined these findings. Graphs of older adults were less segregated,
less efficient in their signal transmission, and had a larger number of connector hubs. Exploring
the predictive utility of these age-related changes in network topology revealed high, albeit less
efficient, performance for older adults whose brain graphs showed stronger dedifferentiation
and reduced neural specificity. In summary, the findings of study 2 complement and add to
the results of study 1 by demonstrating a shifted whole-brain network organization with age,
which enabled participants to maintain high, albeit slower task performance during semantic
word retrieval (Figure 5.1).

Results from studies 1 and 2 indicated an increased demand for cognitive control resources
in older adults. Notably, the pre-SMA emerged as a hub region which contributed to semantic
word retrieval. Based on this finding, study 3 explored the potential of modulating the pre-
SMA via facilitatory TMS to enhance semantic processing in a cross-over study design in
healthy middle-aged to older adults. Participants completed three sessions of task-based fMRI,
a baseline session, during which participants carried out the paradigm in the scanner, and
two TMS sessions, during which effective or sham offline iTBS was administered, followed
by the fMRI experiment. We were interested in the role of the pre-SMA in semantic control
and thus implemented an auditory semantic judgment task with varying control demands
(word-picture matching and feature-picture matching) and a non-verbal tone judgment task as
control task. Although results did not show an effect of stimulation on accuracy and reaction
time in either task, effective iTBS altered task-related activation and functional connectivity.
Results showed increased activation in networks of visual processing and cognitive control
during semantic processing relative to the control task. Surprisingly, these upregulated regions
were associated with poorer semantic performance. Applying whole-brain and ROI-to-ROI
functional connectivity analyses, we found increased whole-brain connectivity for the tone
judgment compared with the semantic judgment task. However, enhanced positive coupling of
the pre-SMA with a cluster in the dorsal attention network after effective iTBS was associated
with faster performance in the most demanding semantic condition. In sum, the findings
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Figure 5.1 Graphical abstract of main results. (A) Comparison of brain graphs of young and older
adults during semantic processing. Results from studies 1 and 2 revealed reduced segregation with
greater between-network functional connectivity in older adults. Brain graphs of older adults had
a larger number of connector hubs (indicated by dotted lines) to facilitate information flow across
networks, which were located in frontal and temporal regions. (B) Behavioral relevance of shifted
network architecture in semantic cognition. Studies 1 and 2 yielded better and faster performance with
increasing within-network functional connectivity (FC) in young but not older adults. Increasing FC
between semantic and default networks was associated with reduced efficiency in both age groups.
Increasing FC between semantic and cognitive control networks was linked to higher efficiency only in
older adults. Increasing FC between default and cognitive control networks was associated with better
performance only in older adults. Facilitatory stimulation of a hub of the domain-general multiple-
demand network enhanced coupling with other cognitive control networks distal to the stimulation
site. This was linked to poorer performance but increased efficiency during semantic processing in a
group of middle-aged to older adults.

of study 3 demonstrate differential effects of iTBS on functional activation and connectivity.
Stimulating the pre-SMA via facilitatory TMS was linked to more efficient but not better
performance in semantic processing. The results reveal the contribution of the MDN to
enhanced access to semantic memory in aging and shed new light on the role of a prefrontal
hub in semantic control, indicating a dissociation between domain-general and domain-specific
semantic control on the neural level (Figure 5.1).

Taken together, this thesis contributes to our knowledge of the neural correlates of semantic
cognition in the young and the aging brain. The findings add to our understanding of age-
related neural changes that might contribute to the increase of word retrieval problems and
general difficulties in demanding language processing contexts in aging. They also open new
perspectives for the development of therapeutic strategies to counteract age-related cognitive
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decline and to design effective protocols for the use of NIBS in healthy and pathological aging.

5.2 Contributions and Implications

The key findings of this thesis advance our knowledge of the functional interactions of domain-
general and domain-specific networks in semantic cognition and provide new evidence for a
multidimensionality of the semantic control network. Furthermore, they have implications
for theoretical frameworks on neurocognitive aging, especially with respect to the coupling
of default and executive resources as described by the DECHA framework (Spreng & Turner,
2019; Turner & Spreng, 2015).

Domain-Specific and Domain-General Control in Semantic Cognition

Semantic cognition activates a widespread, left-lateralized network in the brain, which consists
of representation and control elements (Binder et al., 2009; Jackson, 2021; Jefferies, 2013).
Recent investigations have emphasized shared neural resources of semantic subsystems with
domain-general networks, including an overlap of semantic representation elements with the
DMN (Smallwood et al., 2021; Xu et al., 2016) and of semantic control components with the
MDN (Jackson, 2021; Noonan et al., 2013) and FPN (Xu et al., 2016). The findings of studies
1 and 2 of this thesis align with these observations and add a new perspective regarding the
interaction of these task-relevant networks.

Study 1 showed greatest activation in a network of frontal and superior parietal regions
for the semantic word retrieval task when contrasted with the low-level counting task. These
regions strongly overlapped with the MDN, thus indicating a high executive load for this
task. Notably, some of these regions, such as the pre-SMA and the dorsomedial prefrontal
cortex, and the dorsal angular gyrus, have also been linked to the domain-specific semantic
control network (Jackson, 2021; Noonan et al., 2013). These multifaceted associations point
towards a domain-general subsystem of semantic control. This interpretation was further
supported by our results on increased network coupling between cognitive control regions
and core regions of the DMN, which have also been associated with semantic memory and
representation, including left temporal pole, ventral angular gyrus, and precuneus. Our findings
corroborate the notion that cognitive control and memory-based representation networks
integrate functionally when access to semantic memory is required (Krieger-Redwood et al.,
2016; Spreng et al., 2014). In addition, our results offer insight into the behavioral relevance of
these network interactions, which were associated with better access to semantic memory but
slower semantic word retrieval in young adults, underlining the more effortful communication
between task-relevant networks compared with within-network processes.

The findings of study 2 extended the results of study 1 and added a whole-brain perspective.
First, brain graphs of young adults were strongly segregated, which aligns with general
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observations on the organization of the brain into highly intraconnected modules with an
efficient structure for global information integration (Bassett et al., 2009; Bullmore & Sporns,
2012). However, in line with study 1, graphs of both age groups showed increased connectivity
between subsystems of the DMN and the fronto-parietal control network during semantic
processing. Moreover, in young adults, whole-brain segregation had a pronounced effect on
behavioral performance, indicating better and faster semantic word retrieval with increasing
segregation. Previous work indicates that young adults can benefit from a more integrated
brain organization in situations of high task demand to facilitate information flow across
components (Cohen & D’Esposito, 2016; Vatansever et al., 2015; W. Zhang et al., 2020). Our
results showed that semantic processing in young adults required a task-specific integration
of cognitive control and default networks and was nonetheless less effortful compared with
older adults.

Altogether, studies 1 and study 2 revealed an interaction of cognitive control and default
resources when controlled access to semantic memory is required. Moreover, they elucidated
the behavioral relevance of these network interactions. Study 3 added to these findings
through the facilitatory stimulation of the pre-SMA, which was associated with semantic-
specific processing in studies 1 and 2 and has also been linked to the MDN (Fedorenko et al.,
2013).

The results of study 3 showed increased activation in the dorsal attention network after
effective stimulation during semantic processing. Further, effective TMS enhanced the coupling
of these regions with clusters in dorsal and ventral attention networks, and the FPN during the
tone judgment control task. Although these result might seem at odds, they reveal an important
feature of the pre-SMA, which is a role in domain-general cognitive control, extending beyond
semantic cognition. The findings of study 3 are thus in line with the idea of a multidimension-
ality of semantic control as it has been previously suggested on the behavioral level (Hoffman,
2018) and for the left inferior prefrontal cortex (Badre et al., 2005; Krieger-Redwood et al., 2015).
To prove such a domain-general contribution to semantic control, an effect on domain-general
cognitive processes, such as the speed of processing, would be expected. This was confirmed by
our finding that increased coupling of the pre-SMA with a parietal hub in the dorsal attention
network was associated with faster reactions, thus enhancing the domain-general process of
task efficiency. Hence, the role of the pre-SMA in semantic cognition might be best described
as domain-general semantic control.

In conclusion, the findings of this thesis demonstrate enhanced coupling of cognitive
control and default resources during semantic cognition, which contributes to better, albeit
slower task processing. Furthermore, our results suggest distinct subsystems of semantic
control, consisting of a fronto-temporal domain-specific and a fronto-parietal domain-general
semantic control network.
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Age-Related Changes in Functional Network Interactions in Semantic Cognition

TheDECHA framework proposes that the frequently observed activity increase inMDN regions
and the reduced deactivation of the DMN co-occur and are functionally coupled in older adults
(Spreng & Turner, 2019; Turner & Spreng, 2015). This shift in the network architecture is based
on the continuous accrual of semantic knowledge and the parallel decline of cognitive control
abilities. Older adults thus rely more strongly on their preserved semantic knowledge, which is
reflected by an attenuated suppression of DMN regions compared with young adults. Crucially,
context and cognitive demand of a task determine whether the increased default-executive
coupling in older adults is beneficial or maladaptive. First evidence from domains that are
usually well-preserved in healthy aging, including creativity and autobiographical memory,
confirmed the adaptive potential of increased default-executive coupling in older adults (Adnan
et al., 2019; Spreng et al., 2016). The studies of this thesis contribute to this framework by
exploring age-related changes in the interactions of control and memory networks in semantic
cognition.

In line with DECHA, univariate results of study 1 revealed reduced deactivation of DMN
regions in older relative to young adults during semantic word retrieval. However, functional
connectivity results showed that the coupling of multiple-demand and default resources was
task-relevant in both age groups, due to the high executive demand of the semantic fluency task.
Relating functional connectivity with behavior, provided additional insight into the effects of
network coupling. Older adults performed equally well as young adults but we did not find
an age-related performance advantage in the form of higher accuracy. Increased coupling
of default and executive networks was associated with slower reaction times in both groups,
though much more attenuated in older adults. Our findings thus demonstrate the limitations
of the age-accompanied shift towards semanticization: Tasks that require an efficient use of
control systems while accessing semantic memory might not benefit from the greater semantic
knowledge with age. Moreover, our results on the increase of response times with enhanced
within-network coupling in older but not young adults provide striking evidence for reduced
neural efficiency in aging. The finding aligns with previous work on age-related changes in
semantic cognition (Hoffman & Morcom, 2018) and many other cognitive domains (Dennis &
Cabeza, 2011; Park et al., 2004) and lends support to the concept of neural dedifferentiation
(S.-C. Li & Lindenberger, 1999) in semantic cognition.

Neural dedifferentiation and reduced specificity are often discussed together with neural
compensation, which assumes that the additional activation of domain-specific or domain-
general regions might be linked to the preservation of cognitive functions in healthy aging
(Cabeza et al., 2018). The results of study 2 relate the compensation account to functional
network interactions in semantic cognition. Brain graphs of older adults were characterized
by increased crosstalk between different networks, reduced brain system segregation, less
efficient information flow among distributed networks, and a larger number of connector
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hubs. Notably, these patterns of increased dedifferentiation and reduced neural efficiency (M. Y.
Chan et al., 2017; Chong et al., 2019) were associated with consistently high but less efficient
performance in older adults. Our findings thus show that the enhanced network integration
with age helps to maintain stable performance in semantic processing. Importantly, they also
reveal the limitations of such compensatory reorganization and demonstrate that a youth-like
network architecture in terms of balanced integration and segregation is associated with more
economical processing.

Finally, although the findings of study 3 can only be tentatively linked to accounts on
neurocognitive aging, due to the within-subject study design, the results allow some first
conclusions. Behavioral results showed a detrimental effect of age on reaction times, which
aligns with the idea of slower processing due to reduced efficiency of cognitive control networks
with age (Hedden & Gabrieli, 2004). Moreover, although the increased activation of executive
and control resources after TMS over the pre-SMA was linked to poorer semantic performance,
their enhanced coupling correlated with faster reactions during the most demanding semantic
condition. This demonstrates the crucial role of domain-general control for efficient semantic
processing as discussed in the previous section and might point towards a stimulation-induced
improvement in the efficiency of executive resources in middle-aged to older adults.

In summary, the findings of this thesis inform current accounts on neurocognitive aging
through the perspective of functional network interactions in semantic cognition. The results
align with compensatory accounts but also reveal their limitations in terms of neural efficiency.
Furthermore, they are in line with the DECHA framework and highlight the context depen-
dency of increased coupling of default and executive networks. Our task paradigms relied
on successful access to and retrieval of information from semantic memory, while requiring
an efficient use of cognitive control, which was mirrored by slower behavioral performance
and reduced neural efficiency in older adults. Together, our findings demonstrate poorer
goal-directed behavior with age.

5.3 Future Directions

There are several implications for future research that can be derived from the present thesis.
With respect to the framework of semantic control, future research on the domain-specific and
the domain-general elements and their underlying neural correlates is necessary. This requires
the design of paradigms that modulate both control networks and allow disentangling their
individual contributions. For example, the semantic judgment task, which we designed for
study 3, enabled us to contrast the semantically more demanding feature-picture matching with
the lexico-semantic word-picture matching. While behavioral results confirmed the generally
higher cognitive demand for feature-picture matching, evident through lower accuracy and
higher response times, contrasting univariate results for both tasks revealed greater activation
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during feature-picturematching in a left-lateralized network of classic domain-specific semantic
control regions, such as inferior frontal gyrus and posterior middle temporal gyrus, but also
domain-general semantic control areas, including middle and superior frontal gyrus with
the pre-SMA, and inferior parietal lobe. Importantly, when we contrasted the non-verbal
tone-judgment task with the feature-picture matching task, we found greater activation in
domain-general cognitive control regions (Table C.5), which overlapped with the domain-
general but not the domain-specific semantic control regions during feature-picture matching.
This emphasizes the broad domain generality of these areas and lends additional support to
the proposal of distinct semantic control networks. To further unwind the specificity of these
networks, I am planning to use the data of the baseline session of study 3 to explore their
connectivity profiles during the processing of the different tasks.

Furthermore, additional insight can be gained through the detailed analysis, for instance
via synthesis or meta-analysis studies, of critical hub regions, which are likely to contribute to
different cognitive domains, such as the left inferior frontal gyrus or the angular gyrus. In a
recently published study, we investigated the role of the angular gyrus in semantic cognition
through the synthesis of five neuroimaging studies on semantic processing (Kuhnke et al.,
2022). Findings revealed distinct effects of general task difficulty and semantic processing
demand on the activation of the angular gyrus and highlight separable roles of the angular
gyrus in domain-general and domain-specific semantic control.

To probe the causal relevance of these regions in either domain-specific or domain-general
semantic control, the application of TMS to transiently perturb a region’s contribution to a
cognitive process is another promising approach. In this context, previous investigations could
show that the angular gyrus plays a causal role in the retrieval of specific conceptual features
(Kuhnke et al., 2020) and is causally linked to the left inferior frontal gyrus during semantic
processing (Hartwigsen et al., 2016). Combining TMS with neuroimaging methods can further
elucidate stimulation-induced mechanisms of adaptive plasticity (Hartwigsen & Volz, 2021),
as also demonstrated by study 3 of this thesis. To this end, the temporary disruption of a
domain-specific semantic control hub, such as the posterior middle temporal gyrus, and the
investigation of subsequent short-term reorganization in the brain could help delineate the
contribution of specialized and domain-general networks to semantic cognition.

Another method to explore the relevance of a region in a specific cognitive function is
through the investigation of stroke-induced reorganization processes. In this vein, the study of
persons with semantic aphasia has already led to notable advances with respect to the neural
correlates of semantic control and confirmed the critical role of left inferior frontal gyrus
and posterior middle temporal gyrus (Jefferies & Lambon Ralph, 2006; Noonan et al., 2010).
Voxel-based lesion symptom mapping (VLSM) is a useful tool to study the contribution of a
region to a specific cognitive process by seeking relationships between neural tissue damage
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and behavioral performance (Bates et al., 2003). To investigate the causal relevance of domain-
general and domain-specific semantic control regions in our semantic judgment paradigm, we
are currently collecting data from a larger sample of persons with chronic post-stroke aphasia.
I am planning to apply VLSM to delineate the contribution of frontal, temporal, and parietal
regions to the processing of less and more demanding semantic conditions.

On the basis of the findings regarding the age-related changes in functional networks during
semantic processing, new questions arise as well. First, the first two studies of this thesis
were able to demonstrate changes in the coupling of task-relevant networks with age through
the comparison with a group of younger adults. Although study 3 was primarily planned as
within-subject design to explore the contribution of the pre-SMA to semantic control processes,
a future step would be the integration of a young group to examine a possible effect of age on
stimulation-induced changes in brain activation and functional connectivity. Furthermore, in
comparison to the semantic word retrieval task, the paradigm of study 3 modulates semantic
demand and thus the contribution of domain-general networks to successful task processing.
Based on our findings of studies 1 and 2 that older adults recruit additional domain-general
resources at a lower level of task demand than young adults, the exploration of the semantic
judgment paradigm in young and older adults could provide additional insight into the neural
changes with respect to increased task difficulty despite intact semantic memory.

Second, the results from study 3 demonstrated the potential of TBS to generate changes
in regions distal to the site of stimulation and functionally coupled networks. Exploring the
functional connectivity during less (e.g., word-picture matching) and more (e.g., feature-picture
matching) demanding semantic processing, might reveal hub regions of each network, which
could then be used in targeted stimulation. Importantly, a recent investigation strengthened
an individualized stimulation approach accounting for neuroanatomical differences between
individuals (Lynch et al., 2022). Thus, targeting specific brain networks of domain-specific or
domain-general processing in different age groups and applying an optimized stimulation based
on individual anatomy might be the most promising approach towards efficient enhancement
of functions in cognitive aging.

Third, as outlined in the Introduction, trajectories of cognitive aging are highly individual.
To gain a comprehensive picture of maintenance and compensation processes in the aging
brain, future studies should take both structural and functional changes into account (Cabeza
et al., 2018). For instance, a recent study linked better performance to functional connectivity
during memory encoding, which was related to preserved cortical thickness in the temporal
lobe, thus demonstrating a relationship between cognition and structure and function in
the brain (Capogna et al., 2022). Such multidimensional approaches will also help to better
understand why some people appear to be more resilient to cognitive decline, probably due
to maintenance or reserve of neural resources, and others show rapid deterioration (Nyberg
et al., 2012; Stern et al., 2020).
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Finally, mechanisms such as reserve and maintenance are best explored through a longitudi-
nal approach since adaptive and maladaptive changes in activation and functional connectivity
can only be fully evaluated over time. So far, it is unclear how much of the age-related changes
in functional activation are compensatory or are better described as compensatory attempts
(Cabeza et al., 2018). While the studies of the present thesis were able to relate changes in func-
tional connectivity with behavioral performance and thus provide support for compensation,
albeit not as successful as processing in the young brain, future studies should explore the de-
velopment of these network alterations longitudinally and thus elucidate which patterns relate
to structural maintenance over time and which are true compensation. Moreover, age-related
changes in functional activation and connectivity do not follow a linear trajectory. For instance,
functional connectivity between networks has been shown to change across the lifespan in
resting-state (Ng et al., 2016) but also task-based investigations (Pongpipat et al., 2021). Ideally,
future studies should thus incorporate middle-aged adults to gain a comprehensive picture of
neurocognitive changes across the lifespan.
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Aging is accompanied by a myriad of cognitive changes. Although trajectories of cognitive
aging are highly individual and inter-individual variability is striking (Cabeza et al., 2018),
the steady age-related decline of cognitive control processes— also referred to as fluid intel-
ligence—is well established (Hedden & Gabrieli, 2004). Such processes have been shown to
exhibit pronounced age effects and include the domains of working memory, episodic memory,
processing speed, mental flexibility, spatial reasoning, and inhibitory control (Hasher et al.,
1991; Salthouse, 1996). Semantic memory on the other hand, which refers to the knowledge
about words, concepts, and ideas we have accumulated across the lifespan (so-called crys-
tallized intelligence), remains stable or might even increase due to the ongoing accrual of
knowledge and experience across the life course (Nyberg et al., 1996; Verhaeghen, 2003).

In the brain, cognitive changes with age are mirrored by large-scale reorganization pro-
cesses at the structural and functional levels (Grady, 2012). Task-related performance changes
in older adults have been associated with a pattern of dedifferentiation of neural activity (S.-C.
Li et al., 2001; Park et al., 2004), which is reflected by an under-recruitment of domain-specific
regions (Lövdén et al., 2010) and reduced task-specific lateralization (Cabeza, 2002). Dediffer-
entiation is further characterized by an increased recruitment of areas in the domain-general
multiple-demand network (MDN; Fedorenko et al., 2013) and a reduced deactivation of regions
in the default mode network (DMN; Andrews-Hanna et al., 2007). In line with these observa-
tions, the effect of aging on semantic cognition has been described as reduced specificity and
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increased dedifferentiation in task-related activation, as revealed by a recent meta-analysis
(Hoffman & Morcom, 2018).

Recently, the application of non-invasive brain stimulation techniques, such as transcranial
direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), to
counteract age-related cognitive decline and to promote successful aging has gained increasing
interest. However, so far, findings are mixed, with some studies reporting beneficial effects,
particularly in the domains of working, episodic, and associative memory (Antonenko et al.,
2019; Berryhill & Jones, 2012; Manenti et al., 2013), and some studies observing no additional
effect on cognitive functions (e.g., Antonenko et al., 2022). Combining non-invasive brain
stimulation with neuroimaging techniques is of high importance considering the immense
variability of stimulation approaches regarding stimulation site, duration, and intensity. Fur-
thermore, neuroimaging results can help interpreting behavioral effects and might even be
observed in the absence of a stimulation-induced behavioral change (Abellaneda-Pérez et al.,
2022). To date, no study explored the potential of rTMS to modulate age-related changes in
semantic cognition on the behavioral and neural level.

So far, age-related changes to the functional network architecture in semantic cognition
are poorly understood. The studies presented in this thesis addressed three key issues: 1) the
age-dependent contribution of task-relevant, domain-general networks to semantic cognition,
2) the age-related reorganization of the whole-brain functional network architecture during
semantic processing, and 3) the potential of stimulating a hub of the MDN via rTMS to facilitate
semantic retrieval in healthy older adults as revealed through behavioral performance and
neuroimaging.

The results of this thesis are summarized in Figure 6.1. Studies 1 and 2 applied a seman-
tic word retrieval paradigm to explore age differences in the organization of task-relevant
functional networks. Groups of healthy young and older adults performed a paced overt
semantic fluency task and a counting task as low-level control task in a functional magnetic
resonance imaging (fMRI) experiment. Study 1 implemented univariate fMRI analyses and
psychophysiological interaction analyses to delineate the functional networks for both tasks
and to examine the functional coupling of the strongest activation peaks for the semantic task
relative to the control task. Results showed that task-specific networks displayed strong overlap
with the domain-general multiple-demand and default-mode system in both age groups. Using
task-based connectivity analyses on the whole brain level and between regions of interest
from both networks, results showed an interaction of the MDN and DMN network, which
was present across age groups and specific to the semantic word retrieval task. Notably, the
behavioral relevance of increased coupling within and between networks differed between
groups: In young adults, increased within-network connectivity was associated with faster
and better performance, whereas older adults did not capitalize on strengthened functional
connectivity in the same way. Together, study 1 led to two key findings. First, independent of
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age, integration between usually anticorrelated networks increases when controlled access to
semantic memory is required to facilitate goal-directed behavior. Second, older adults do not
benefit from task-relevant network coupling in the same way as young adults, which indicates
a reduced efficiency of neural networks with age.

While study 1 explored the role of two task-relevant domain-general systems, the MDN and
DMN, in semantic word retrieval, it remained an open question whether age-related changes to
the network organization on the whole-brain level might have impacted our findings. That is,
do older adults potentially rely on different functional networks during task processing, which
enables them to maintain high performance? To this end, study 2 of this thesis combined
multivariate independent component analysis with task-based functional connectivity to assess
age differences in the network architecture of semantic cognition. Moreover, we applied graph
theoretical measures of brain system integration and segregation to examine age-related
changes to the network topology and to relate them to our cognitive measures of fluid and
crystallized intelligence. Task-relevant networks for semantic word retrieval included default,
semantic, attention, and cognitive control networks across age groups. However, we detected
fundamental differences in the coupling of networks with age. Networks of older adults
showed increased integration compared with young adults. In particular, subsystems of the
DMN demonstrated greater connectivity with attention and control networks, which was
associated with preserved, albeit slower semantic processing in older adults. Results from graph
theoretical measures underlined these findings. Graphs of older adults were less segregated,
less efficient in their signal transmission, and had a larger number of connector hubs. Exploring
the predictive utility of these age-related changes in network topology revealed high, albeit less
efficient, performance for older adults whose brain graphs showed stronger dedifferentiation
and reduced neural specificity. In summary, the findings of study 2 complement and add to
the results of study 1 by demonstrating a shifted whole-brain network organization with age,
which enabled participants to maintain high, albeit slower task performance during semantic
word retrieval.

Results from studies 1 and 2 indicated an increased demand for cognitive control resources
in older adults. Notably, the pre-supplementary motor area (pre-SMA) emerged as a hub region,
which contributed to semantic word retrieval. Based on this finding, study 3 explored the
potential of modulating the pre-SMA via facilitatory rTMS to enhance semantic processing
with a cross-over study design in healthy middle-aged to older adults. Participants completed
three sessions of task-based fMRI, a baseline session, during which participants carried out
the paradigm in the scanner, and two rTMS sessions, during which effective or sham offline
intermittent theta-burst stimulation (iTBS) was administered, followed by the fMRI experiment.
We were interested in the role of the pre-SMA in semantic control and thus implemented an
auditory semantic judgment task with varying control demands (word-picture matching and
feature-picturematching) and a non-verbal tone judgment task as control task. Although results
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Figure 6.1 Graphical abstract of main results. (A) Comparison of brain graphs of young and older
adults during semantic processing. Results from studies 1 and 2 revealed reduced segregation with
greater between-network functional connectivity in older adults. Brain graphs of older adults had
a larger number of connector hubs (indicated by dotted lines) to facilitate information flow across
networks, which were located in frontal and temporal regions. (B) Behavioral relevance of shifted
network architecture in semantic cognition. Studies 1 and 2 yielded better and faster performance with
increasing within-network functional connectivity (FC) in young but not older adults. Increasing FC
between semantic and default networks was associated with reduced efficiency in both age groups.
Increasing FC between semantic and cognitive control networks was linked to higher efficiency only in
older adults. Increasing FC between default and cognitive control networks was associated with better
performance only in older adults. Facilitatory stimulation of a hub of the domain-general multiple-
demand network enhanced coupling with other cognitive control networks distal to the stimulation
site. This was linked to poorer performance but increased efficiency during semantic processing in a
group of middle-aged to older adults.

did not show an effect of stimulation on accuracy and reaction time in either task, effective iTBS
altered task-related activation and functional connectivity. Results showed increased activation
in networks of visual processing and cognitive control during semantic processing relative to
the control task. Surprisingly, these upregulated regions were associated with poorer semantic
performance. Applying whole-brain and ROI-to-ROI functional connectivity analyses, we
found increased whole-brain connectivity for the tone judgment compared with the semantic
judgment task. However, enhanced positive coupling of the pre-SMAwith a cluster in the dorsal
attention network after effective iTBS was associated with faster performance in the most
demanding semantic condition. In sum, the findings of study 3 demonstrate differential effects
of iTBS on functional activation and connectivity. Stimulating the pre-SMA via facilitatory
rTMS was linked to more efficient but not better performance in semantic processing. The
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results reveal the contribution of the MDN to enhanced access to semantic memory in aging
and shed new light on the role of a prefrontal hub in semantic control, indicating a dissociation
between domain-general and domain-specific semantic control on the neural level.

Taken together, this thesis contributes to our knowledge of the neural correlates of semantic
cognition in the young and the aging brain. The findings of this thesis demonstrate enhanced
coupling of cognitive control and default resources during semantic cognition independent of
age, which contributes to better, albeit slower task processing. Furthermore, our results suggest
distinct subsystems of semantic control, consisting of a fronto-temporal domain-specific and
a fronto-parietal domain-general semantic control network. Moreover, this thesis adds to
our understanding of age-related neural changes that might contribute to the increase of
word retrieval problems and general difficulties in demanding language processing contexts
in aging. The results align with compensatory accounts of neurocognitive aging but also
reveal their limitations in terms of neural efficiency. Furthermore, they are in line with the
default-executive coupling hypothesis of aging (Spreng & Turner, 2019; Turner & Spreng, 2015)
and highlight the context dependency of increased coupling of default and executive networks.
Finally, they also open new perspectives for the development of therapeutic strategies to
counteract age-related cognitive decline and to design effective protocols for the use of NIBS
in healthy and pathological aging.
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Supplementary Methods

Figure S1. Age differences in neuropsychological tests. Test scores were z-transformed. Higher
z-values signify better performance. STW Spot-the-word test, DSST Digit symbol substitution test,
TMT Trail making test. *** p < 0.001, ** p < 0.01, * p < 0.05.

Table S1. Age-specific regions of interest (ROIs) within domain-general networks.

ROI Hemi x y z Region
Older adults
MDN (from contrast Semantic fluency > Counting)
1 L -9 15 51 Pre-SMA
2 L -31 25 4 Insula
3 R 31 27 2 Insula
4 L -34 0 57 MFGd
5 L -44 5 35 MFGv
6 R 43 35 32 MFG
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7 L -14 -65 51 SPL
8 L -11 -72 10 IntraCAL
9 R 18 -80 7 IntraCAL
DMN (from contrast Counting > Semantic fluency)
10 R 6 -52 38 Precuneus
11 R 51 12 -31 TP

Young adults
MDN (from contrast Semantic fluency > Counting)
1 L -4 2 29 dACC
2 L -31 25 2 Insula
3 R 31 27 2 Insula
4 R 36 42 32 MFG
5 L -29 -65 51 SPL
DMN (from contrast Counting > Semantic fluency)
6 L -56 2 -20 MTG
7 R 8 -65 29 Precuneus
8 R 51 10 -31 TP

Note. Coordinates are given in MNI standard space. Abbreviations: Hemi Hemisphere; Pre-SMA
Pre-supplementary motor area; MFG/MFGd/MFGv Middle frontal gyrus dorsal/ventral; SPL Superior
parietal lobe; IntraCAL Intracalcarine gyrus; TP Temporal pole; dACC Dorsal anterior cingulate cortex;
MTG Middle temporal gyrus; MDN Multiple-demand network; DMN Default mode network.

Head motion and functional connectivity

We calculated the following analyses to further ensure that our results of the functional
connectivity analyses were not confounded by head motion.

Firstly, we checked whether head motion was correlated with our functional connectivity
measures. To this end, we calculated the root mean square (RMS) of realignment parameters for
each participant (Power et al., 2014) and Pearson correlations for each functional connectivity
measure and age group. Results did not reveal any significant correlation for within-MDN
functional connectivity (OA: r = 0.051, p = 0.8; YA: r = 0.032, p = 0.87), within-DMN functional
connectivity (OA: r = 0.058, p = 0.77; YA: r = 0.062, p = 0.75), and between-network functional
connectivity (OA: r = 0.03, p = 0.88; YA: r = 0.087, p = 0.65). The script Secondly, to further rule
out any potential impact of head motion on our results, we performed the following supple-
mentary statistical analyses with motion RMS being added to the GLM as a covariate. The
key statistical conclusions remain the same. (i) For within- and between-network functional
connectivity (equivalent to statistical analyses for figure 7B), we found significant effects for
within-MDN (β = 0.07, t = 2.01, p = 0.049) and between MDN and DMN connectivity (β = 0.12,
t = 2.88, p = 0.006) which confirms our previous results. As before, there was no difference
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in strength of functional connectivity between age groups (all p > 0.3). Further, there was no
effect of motion RMS on any within- and between-network connectivity (all p > 0.68). (ii) For
the effect of functional connectivity on task performance (equivalent to statistical analyses for
figure 7C), we performed mixed-effects models with motion RMS as an additional covariate. For
accuracy, we found a significant interaction between age and functional connectivity between
MD and DM regions (χ2 = 4.64, p = 0.03) which was not detected previously. Results showed
that older adults’ accuracy during semantic fluency decreased with strengthening functional
connectivity between networks, while young adults showed the opposite pattern (Fig. 1).
This finding underlines our interpretation of an age-dependent efficiency of task-relevant
networks in semantic cognition. For response time data, results did not differ with respect to
the statistical models that did not include a covariate for motion RMS. We found significant
interactions between age and all functional connectivity measures: within-MDN functional
connectivity (χ2 = 32.29, p < 0.001), within-DMN functional connectivity (χ2 = 35.55, p < 0.001),
and between-network functional connectivity (χ2 = 21.18, p < 0.001).
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Supplementary Results

Table S2. Results for mixed-effects models for accuracy and response time.

Accuracy Response time

Coefficient Log-Odds Conf. Int (95%) p Estimates Conf. Int (95%) p

Intercept 6.28 5.21 – 7.34 < 0.001 6.45 6.41 – 6.49 < 0.001

Age -3.94 -5.96 – -1.92 0.136 0.01 0.00 – 0.02 0.072

Condition -6.47 -8.58 – -4.36 < 0.001 0.17 0.13 – 0.22 < 0.001

Difficulty 4.63 2.53 – 6.73 < 0.001 -0.06 -0.11 – -0.01 < 0.001

Education -0.11 -0.24 – 0.01 0.082 -0.01 -0.01 – 0.02 0.058

Age * Condition 7.26 3.23 – 11.29 0.162 0.08 0.06 – 0.09 < 0.001

Age * Difficulty -7.99 -11.95 – -4.03 0.002 0.00 -0.01 – 0.02 0.7

Condition * Difficulty -5.03 -9.22 – -0.84 0.049 -0.10 -0.20 – -0.00 0.056

Age * Condition * Difficulty 14.95 7.05 – 22.84 0.002 0.03 -0.00 – 0.07 0.092

Random Effects

δ2 3.29 0.10

θ00 0.19 Subj 0.01 Subj

0.22 Category 0.00 Category

ICC 0.11 0.08

N 58 Subj 58 Subj

22 Category 22 Category

Observations 19710 19491

Marginal R2 / Conditional R2 0.900 / 0.911 0.079 / 0.156

Note. Significant effects are marked in bold. Contrasts are sum coded. P-values were obtained via
likelihood ratio tests. Conf. Int. Confidence interval.
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Table S3. Results of post-hoc tests for significant three-way interaction Age x Condition x
Difficulty for accuracy model. P-values are Bonferroni-corrected.

Contrast Condition Odds Ratio SE df Conf. Int (95%) z p

OA Easy / YA Easy Categories 0.57 0.12 Inf 0.32 – 0.98 -2.71 0.040

OA Easy / OA Difficult Categories 6.41 1.68 Inf 3.21 – 12.82 7.08 < 0.001

OA Easy / YA Difficult Categories 6.10 1.65 Inf 2.98 – 12.48 6.67 < 0.001

YA Easy / OA Difficult Categories 11.34 3.22 Inf 5.37 – 23.97 8.56 < 0.001

YA Easy / YA Difficult Categories 10.79 2.95 Inf 5.25 – 22.17 8.71 < 0.001

OA Difficult / YA Difficult Categories 0.95 0.11 Inf 0.71 – 1.28 -0.45 1

OA Easy / YA Easy Counting 0.00 0.00 Inf 0.00 – 0.01 -3.79 0.001

OA Easy / OA Difficult Counting 0.56 0.46 Inf 0.06 – 4.99 -0.71 1

OA Easy / YA Difficult Counting 0.65 0.53 Inf 0.08 – 5.46 -0.53 1

YA Easy / OA Difficult Counting 2461403.54 10105894.32 Inf 48.63 – 124584851753.70 3.58 0.002

YA Easy / YA Difficult Counting 2896157.64 11755020.17 Inf 64.76 – 129525179185.02 3.67 0.001

OA Difficult / YA Difficult Counting 1.18 0.61 Inf 0.30 – 4.67 0.31 1

Note. Significant effects are marked in bold. SE standard error; df degrees of freedom; Conf. Int
confidence interval.

Table S4. Results of post-hoc tests for significant two-way interaction Age x Condition for
response time model. P-values are Bonferroni-corrected.

Contrast Condition Odds Ratio SE df Conf. Int (95%) z p

OA Easy / YA Easy Categories 0.57 0.12 Inf 0.32 – 0.98 -2.71 0.040

OA Easy / OA Difficult Categories 6.41 1.68 Inf 3.21 – 12.82 7.08 < 0.001

OA Easy / YA Difficult Categories 6.10 1.65 Inf 2.98 – 12.48 6.67 < 0.001

YA Easy / OA Difficult Categories 11.34 3.22 Inf 5.37 – 23.97 8.56 < 0.001

YA Easy / YA Difficult Categories 10.79 2.95 Inf 5.25 – 22.17 8.71 < 0.001

OA Difficult / YA Difficult Categories 0.95 0.11 Inf 0.71 – 1.28 -0.45 1

OA Easy / YA Easy Counting 0.00 0.00 Inf 0.00 – 0.01 -3.79 0.001

OA Easy / OA Difficult Counting 0.56 0.46 Inf 0.06 – 4.99 -0.71 1

OA Easy / YA Difficult Counting 0.65 0.53 Inf 0.08 – 5.46 -0.53 1

YA Easy / OA Difficult Counting 2461403.54 10105894.32 Inf 48.63 – 124584851753.70 3.58 0.002

YA Easy / YA Difficult Counting 2896157.64 11755020.17 Inf 64.76 – 129525179185.02 3.67 0.001

OA Difficult / YA Difficult Counting 1.18 0.61 Inf 0.30 – 4.67 0.31 1

Note. Significant effects are marked in bold. SE standard error; df degrees of freedom; Conf. Int
confidence interval.
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Figure S2. Functional MRI results for main effects of tasks from univariate analyses for each age group.
Results are FWE-corrected at p < 0.05 at peak level.

Table S5. Older adults: Semantic fluency > Rest.

Anatomical structure Hemi k t x y z
Postcentral gyrus L 899 14.26 -46 -10 35
Postcentral gyrus L 12.75 -56 -8 29
Postcentral gyrus L 12.01 -51 -13 46
Postcentral gyrus L 11.13 -61 0 24
Cerebellum L 407 13.28 -34 -57 -26
Cerebellum L 11.9 -16 -62 -15
Cerebellum L 9.27 -14 -60 -23
Cerebellum L 9 -16 -75 -20
Supplementary motor cortex L 878 13.11 -4 2 62
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Supplementary motor cortex R 12.98 4 0 68
Supplementary motor cortex L 11.61 -9 7 57
Superior frontal gyrus R 11.5 11 5 62
Postcentral gyrus R 370 12 53 -5 26
Precentral gyrus R 11.77 51 -5 35
Postcentral gyrus R 8.46 66 -3 18
Caudate nucleus R 86 11.63 18 2 24
Caudate nucleus R 9.59 16 -8 21
Caudate nucleus R 8.72 11 0 10
Cerebellum R 571 11.58 31 -65 -26
Cerebellum R 9.98 28 -67 -56
Cerebellum R 9.14 21 -72 -53
Cerebellum R 8.97 36 -55 -50
Middle frontal gyrus R 163 11.36 36 47 26
Middle frontal gyrus R 9.23 41 35 29
Middle frontal gyrus R 7.43 26 35 26
Middle frontal gyrus R 7.28 36 42 18
Insula L 122 9.92 -31 27 4
Insula L 8.09 -31 15 7
Inferior frontal gyrus, pars orbitalis L 7.92 -44 37 -9
Insula R 148 9.91 31 27 2
Insula R 8.77 43 20 2
Inferior frontal gyrus, pars orbitalis R 6.47 38 32 -6
Superior temporal gyrus R 78 9.76 63 -3 2
Superior temporal gyrus R 8.24 56 -13 2
Superior temporal gyrus R 7.49 68 -15 2
Superior temporal gyrus R 7.06 51 -18 7
Caudate nucleus L 45 9.56 -16 -10 24
Caudate nucleus L 9.11 -14 -5 16
Superior parietal lobe L 98 9.33 -19 -60 48
Inferior parietal sulcus L 8.5 -26 -45 38
Inferior parietal lobe L 7.99 -26 -55 38
Inferior parietal lobe L 7.77 -41 -40 38
Superior temporal gyrus L 54 8.72 -51 -28 10
Superior temporal gyrus L 7.68 -66 -23 10
Superior temporal gyrus L 6.7 -41 -32 10
Inferior frontal gyrus, pars triangularis L 20 8.71 -36 40 4
Superior temporal gyrus L 21 8.09 -64 -10 4
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Note. FWE-corrected (p < 0.05) at peak level, k ≥ 20 voxels.

Table S6. Young adults: Semantic fluency > Rest.

Anatomical structure Hemi k t x y z
Presupplementary motor cortex L 767 15.05 -4 12 51
Supplementary motor cortex L 13.89 -6 17 43
Supplementary motor cortex R 12.54 4 7 62
Middle cingulate cortex R 11.17 11 20 38
Insula L 280 13.95 -34 27 2
Insula L 11.74 -31 20 7
Inferior frontal gyrus, pars opercularis L 8.61 -46 10 7
Inferior frontal gyrus, pars opercularis L 7.01 -49 17 -4
Cerebellum R 683 13.82 33 -55 -31
Cerebellum R 13.01 43 -60 -28
Cerebellum R 11.51 33 -62 -50
Cerebellum R 11.24 26 -67 -48
Postcentral gyrus L 331 13.74 -49 -15 40
Postcentral gyrus L 10.89 -56 -13 46
Postcentral gyrus L 9.93 -61 0 21
Precentral gyrus L 8.04 -54 0 46
Cerebellum L 377 13.18 -26 -60 -26
Cerebellum L 12.1 -46 -62 -28
Insula R 130 12.01 33 22 7
Inferior frontal gyrus, pars opercularis R 9.4 46 15 4
Insula R 9.05 41 20 -1
Cerebellum R 40 10.86 1 -47 -23
Cerebellum L 68 10.41 -36 -60 -50
Precentral gyrus R 208 10.23 56 -3 46
Precentral gyrus R 10.09 46 -10 38
Postcentral gyrus R 8.94 56 -5 35
Rolandic operculum R 7.71 61 -3 16
Inferior frontal gyrus, pars triangularis L 208 9.99 -44 32 24
Inferior frontal gyrus, pars triangularis L 8.29 -51 30 21
Inferior frontal gyrus, pars triangularis L 8.13 -39 35 7
Inferior frontal gyrus, pars triangularis L 7.96 -51 35 10
Thalamus L 57 9.31 -11 -5 13
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Caudate nucleus L 9.2 -16 -3 21
Inferior frontal gyrus, pars opercularis L 98 8.33 -39 2 26
Precentral gyrus L 7.6 -46 10 32
Precentral gyrus L 7.16 -41 0 38
Inferior frontal gyrus, pars triangularis L 6.5 -46 15 24
Middle frontal gyrus R 81 8.1 33 47 32
Middle frontal gyrus R 7.08 31 47 24
Caudate nucleus R 43 8.09 18 5 21
Caudate nucleus R 7.75 16 -3 24
Caudate nucleus R 7.73 18 12 16
Middle frontal gyrus L 26 7.57 -34 55 21
Superior temporal gyrus R 21 7.5 66 -30 7
Superior temporal gyrus R 6.7 56 -30 4
Superior temporal gyrus L 20 6.74 -59 -15 4

Note. FWE-corrected (p < 0.05) at peak level, k ≥ 20 voxels.

Table S7. Older adults: Counting > Rest.

Anatomical structure Hemi k t x y z
Postcentral gyrus L 347 11.69 -46 -13 38
Postcentral gyrus L 11.56 -61 -3 24
Postcentral gyrus L 11.52 -51 -13 46
Postcentral gyrus L 11.05 -56 -8 29
Postcentral gyrus R 342 11.43 48 -8 35
Postcentral gyrus R 10.71 53 -3 24
Postcentral gyrus R 9.39 63 -3 18
Supplementary motor cortex L 57 10.16 -4 -5 70
Supplementary motor cortex R 59 9.96 4 0 68
Cerebellum L 52 9.35 -29 -62 -23
Cerebellum L 7.84 -16 -65 -18
Superior temporal gyrus R 49 8.44 66 -10 2
Superior temporal gyrus R 7.71 63 2 -1
Superior temporal gyrus R 6.96 68 -18 4
Superior temporal gyrus R 6.76 53 -15 4
Superior temporal gyrus L 46 8.4 -46 -42 21
Superior temporal gyrus L 6.54 -46 -37 13
Superior temporal gyrus L 6.19 -51 -28 10
Cerebellum R 26 6.96 21 -60 -23
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Cerebellum R 6.9 11 -60 -23

Note. FWE-corrected (p < 0.05) at peak level, k ≥ 20 voxels.

Table S8. Young adults: Counting > Rest.

Anatomical structure Hemi k t x y z
Postcentral gyrus L 317 11.47 -61 0 21
Postcentral gyrus L 11.3 -49 -15 40
Postcentral gyrus L 9.28 -56 -13 46
Postcentral gyrus L 6.99 -59 -8 16
Precentral gyrus R 247 10.42 46 -10 38
Precentral gyrus R 9.44 56 -3 46
Rolandic operculum R 9.35 61 2 16
Postcentral gyrus R 8.25 56 -8 35
Cerebellum R 37 8.3 13 -60 -20
Cerebellum L 25 7.37 -16 -60 -23

Note. FWE-corrected (p < 0.05) at peak level, k ≥ 20 voxels.

Table S9. Older adults: Semantic fluency > Counting.

Anatomical structure Hemi k t x y z
Cerebellum L 1844 12.99 -36 -62 -26
Cerebellum R 12.59 28 -62 -26
Cerebellum L 12.03 -29 -67 -26
Cerebellum R 11.08 6 -80 -31
Middle frontal gyrus L 578 12.9 -44 5 35
Inferior frontal gyrus, pars opercularis L 11.2 -41 15 21
Precentral gyrus L 10.7 -39 2 24
Middle frontal gyrus L 8.94 -46 7 46
Superior frontal gyrus (preSMA) L 661 12.02 -9 15 51
Presupplementary motor cortex L 11.62 -9 20 43
Superior frontal gyrus L 10.34 -1 10 60
Superior frontal gyrus R 9.34 8 15 48
Insula L 269 10.98 -31 25 4
Caudate nucleus L 10.84 -16 0 16
Caudate nucleus L 9.52 -16 -10 21
Superior frontal gyrus L 8.74 -19 10 4
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Insula R 113 10.95 31 27 2
Inferior frontal gyrus. pars triangularis R 7.25 48 22 -4
Frontal operculum R 7.08 43 20 4
Caudate nucleus R 106 9.96 18 15 18
Caudate nucleus R 9.53 18 -8 21
Caudate nucleus R 8.67 16 0 18
Thalamus R 8.22 11 0 10
Middle frontal gyrus R 36 9.79 43 35 32
Superior frontal gyrus L 100 9.12 -21 12 54
Middle frontal gyrus L 6.82 -21 -3 60
Middle frontal gyrus L 6.57 -24 20 51
Intracalcarine cortex R 43 9.01 18 -80 7
Occipital pole R 7.93 13 -95 10
Intracalcarine cortex R 6.77 13 -77 16
Angular gyrus L 27 8.1 -34 -72 43
Middle frontal gyrus L 24 8.07 -34 0 57
Superior parietal lobe L 61 7.65 -14 -65 51
Superior parietal lobe L 7.31 -21 -65 60
Angular gyrus L 6.65 -29 -62 46
Intracalcarine cortex L 71 7.52 -11 -72 10
Intracalcarine cortex L 7.24 -6 -87 2
Intracalcarine cortex L 6.96 -4 -82 10
Middle frontal gyrus R 21 7.39 23 60 -4
Middle frontal gyrus R 7.05 31 57 -9
Thalamus L 21 6.99 -4 -5 10

Note. FWE-corrected (p < 0.05) at peak level, k ≥ 20 voxels.

Table S10. Young adults: Semantic fluency > Counting.

Anatomical structure Hemi k t x y z
Insula L 3112 20.03 -31 25 2
Presupplementary motor cortex L 16.85 -4 25 40
Presupplementary motor cortex L 16.33 -6 12 51
Presupplementary motor cortex R 14.72 13 27 29
Cerebellum R 2970 19.11 33 -57 -31
Cerebellum R 16.12 31 -65 -28
Cerebellum R 13.89 28 -70 -50
Cerebellum R 12.66 41 -60 -28
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Anterior cingulate gyrus L 90 14.15 -4 2 29
Anterior cingulate gyrus L 9.12 -1 12 24
Anterior cingulate gyrus R 8.89 6 7 26
Insula R 315 13.32 31 27 2
Insula R 12.64 38 20 -4
Caudate nucleus L 235 12.81 -9 5 2
Caudate nucleus L 12.02 -16 -3 21
Thalamus L 11.32 -11 -5 13
Caudate nucleus L 10.63 -16 7 16
Brain stem L 296 12.46 -6 -23 -18
Thalamus L 11.94 -9 -18 16
Thalamus L 11.85 -4 -23 10
Thalamus L 10.36 -4 -13 10
Superior parietal lobe L 224 10.49 -29 -65 51
Angular gyrus L 10.21 -29 -72 43
Inferior parietal lobe L 8.84 -34 -57 40
Middle occipital gyrus L 6.47 -31 -80 38
Caudate nucleus R 215 10.45 18 10 18
Caudate nucleus R 10.38 8 7 2
Caudate nucleus R 9.57 13 7 10
Caudate nucleus R 9.16 18 -3 21
Superior temporal gyrus L 54 9.62 -61 -30 7
Planum temporale L 6.97 -61 -15 4
Middle frontal gyrus R 176 8.3 36 42 32
Middle frontal gyrus R 7.56 31 55 26
Middle frontal gyrus R 7.53 33 37 21
Middle frontal gyrus R 7.17 41 35 40

Note. FWE-corrected (p < 0.05) at peak level, k ≥ 20 voxels.

Table S11. Older adults: Counting > Semantic fluency.

Anatomical structure Hemi k t x y z
Temporal pole R 30 9.33 51 12 -31
Precuneus R 45 7.72 6 -52 38

Note. FWE-corrected (p < 0.05) at peak level, k ≥ 20 voxels.
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Table S12. Young adults: Counting > Semantic fluency.

Anatomical structure Hemi k t x y z
Temporal pole R 75 11.02 51 10 -31
Temporal pole R 6.93 43 20 -28
Precuneus R 312 9.7 8 -65 29
Precuneus R 9.59 11 -52 35
Precuneus L 9.05 -9 -52 35
Insula L 46 8.62 -41 -8 -1
Insula L 7.24 -36 -18 18
Insula L 7.02 -39 -15 2
Insula R 62 8.48 36 -15 4
Insula R 7.66 41 0 -6
Insula R 7.1 38 -15 21
Middle temporal gyrus L 27 8.27 -56 2 -20
Rolandic operculum R 22 8.01 53 0 10
Posterior cingulate cortex L 40 7.9 -6 -30 46
Precentral gyrus L 6.77 -6 -25 54
Precentral gyrus R 28 7.42 1 -15 62
Precentral gyrus L 6.91 -4 -23 70

Note. FWE-corrected (p < 0.05) at peak level, k ≥ 20 voxels.

Table S13. Young adults: Counting > Semantic fluency (p < 0.001 uncorr., FWE-corrected p <
0.05 at cluster level).

Anatomical structure Hemi k t x y z
Temporal pole R 281 11.02 51 10 -31
Temporal pole R 6.93 43 20 -28
Middle temporal gyrus R 5.93 61 -8 -12
Superior temporal gyrus R 4.35 48 -10 -15
Precuneus R 3620 9.7 8 -65 29
Precuneus R 9.59 11 -52 35
Precuneus L 9.05 -9 -52 35
Insula R 8.48 36 -15 4
Central operculum R 8.01 53 0 10
Insula L 438 8.62 -41 -8 -1
Insula L 7.24 -36 -18 18
Insula L 7.02 -39 -15 2
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Precentral gyrus L 6.99 -59 2 10
Insula L 5.22 -41 -3 -12
Middle temporal gyrus L 151 8.27 -56 2 -20
Temporal pole L 7.06 -54 10 -31
Temporal pole L 4.5 -44 20 -31
Temporal pole L 3.99 -41 7 -23
Anterior cingulate cortex L 96 7.36 -6 27 -6
Anterior cingulate cortex L 4.09 -6 42 -4
Angular gyrus L 281 7.11 -54 -62 35
Angular gyrus L 5.46 -41 -60 26
Middle temporal gyrus L 5.05 -46 -62 18
Angular gyrus L 4.46 -46 -75 35
Angular gyrus L 4.03 -49 -67 43
Angular gyrus R 389 7.02 51 -57 26
Angular gyrus R 4.6 46 -65 48
Angular gyrus R 4.16 43 -72 35
Lateral occipital cortex R 4.1 46 -77 26
Lateral occipital cortex R 3.55 56 -62 7

Note. FWE-corrected (p < 0.05) at cluster level, p < 0.001 at peak level.

Table S14. Results for linear mixed-effects model for parameter estimates from fMRI main
effects.

Beta weights
Coefficient Estimates Conf. Int (95%) p

Intercept -0.39 -0.54 – -0.24 < 0.001
Network 1.07 0.95 – 1.19 < 0.001
Age 0.34 0.21 – 0.46 < 0.001
Condition 0.49 0.37 – 0.61 < 0.001
Network * Age -0.02 -0.15 – 0.10 0.704
Network * Condition 1.14 1.02 – 1.26 < 0.001
Age * Condition -0.02 -0.14 – 0.10 0.762
Network * Age * Condition -0.27 -0.39 – -0.15 < 0.001
Random Effects
δ2 0.91
θ00 Subj 0.06
ICC 0.06
N Subj 58
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Observations 232
Marginal R2 / Conditional R2 0.751 / 0.766

Note. Significant effects are marked in bold. Contrasts are sum coded. P-values were obtained via
likelihood ratio tests. Conf. Int. Confidence interval.

Table S15. Results for post-hoc tests for significant three-way interaction Network x Age x
Contrast for parameter estimates model. P-values are Bonferroni-corrected.

Contrast fMRI contrast Estimate SE df Conf. Int (95%) t p
OA MDN - YA MDN SF rest 0.04 0.25 196.93 -0.63 – 0.71 0.17 1
OA MDN - OA DMN SF rest 3.83 0.25 195.3 3.15 – 4.51 15.05 < 0.001
OA MDN - YA DMN SF rest 5.05 0.25 196.93 4.38 – 5.72 20.18 < 0.001
YA MDN - OA DMN SF rest 3.79 0.25 196.93 3.12 – 4.45 15.12 < 0.001
YA MDN - YA DMN SF rest 5.01 0.25 195.3 4.35 – 5.66 20.38 < 0.001
OA DMN - YA DMN SF rest 1.22 0.25 196.93 0.56 – 1.89 4.89 < 0.001
OA MDN - YA MDN Count rest 1.20 0.25 196.93 0.54 – 1.87 4.81 < 0.001
OA MDN - OA DMN Count rest 0.35 0.25 195.3 -0.33 – 1.03 1.38 1
OA MDN - YA DMN Count rest 0.57 0.25 196.93 -0.10 – 1.24 2.27 0.146
YA MDN - OA DMN Count rest -0.85 0.25 196.93 -1.52 – -0.19 -3.41 0.005
YA MDN - YA DMN Count rest -0.64 0.25 195.3 -1.29 – 0.02 -2.59 0.062
OA DMN - YA DMN Count rest 0.22 0.25 196.93 -0.45 – 0.89 0.87 1

Note. Significant effects are marked in bold. SF semantic fluency; Count counting; MDN multiple-
demand network; DMN default mode network; SE standard error; df degrees of freedom; Conf. Int
confidence interval.

Table S16. Young adults: Easy > Difficult semantic categories.

Anatomical structure Hemi k t x y z
Middle frontal gyrus R 20 7.24 26 2 51
Middle frontal gyrus R 6.49 31 12 51

Note. FWE-corrected (p < 0.05) at peak level, k ≥ 20 voxels.

Table S17. PPI seed: Pre-supplementary Motor Area [-6 12 51].

Anatomical structure Hemi k t x y z
Older adults
No significant clusters above threshold.

Young adults
Caudate nucleus L 92 9.89 -14 10 4
Caudate nucleus L 8.68 -16 20 4
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Caudate nucleus L 6.18 -11 7 13
Caudate nucleus R 76 9.19 8 12 2
Caudate nucleus R 7.72 18 22 -4
Putamen R 7.30 18 12 -1
Caudate nucleus R 6.93 18 25 4
Precuneus L 125 8.31 -6 -52 16
Posterior cingulate cortex L 7.60 -4 -55 26
Precuneus L 7.44 -11 -55 7
Thalamus L 35 7.30 -1 -13 7
Thalamus R 7.29 4 -20 10
Thalamus L 6.50 -9 -25 13

Table S18. PPI seed: Left Insula [-31 25 2].

Anatomical structure Hemi k t x y z
Older adults
No significant clusters above threshold.

Young adults
Caudate nucleus R 36 10.09 8 12 2
Caudate nucleus L 34 7.04 -14 12 4
Caudate nucleus L 6.33 -16 22 2
Precuneus L 31 6.88 -9 -60 7
Precuneus L 6.75 -6 -52 16

Table S19. PPI seed: Right Insula [31 27 2].

Anatomical structure Hemi k t x y z
Older adults
Precuneus R 29 8.92 1 -60 26
Posterior cingulate gyrus L 8.56 -1 -45 26
Inferior frontal gyrus, pars orbitalis L 20 7.39 -31 35 -15
Inferior frontal gyrus, pars orbitalis L 6.46 -44 30 -12

Young adults
No significant clusters above threshold.
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Table S20. PPI seed: Right Temporal Pole [48 15 -31].

Anatomical structure Hemi k t x y z
Older adults
Inferior frontal gyrus, pars opercularis R 24 7.33 51 17 -1
Insula R 7.02 41 27 -1
Insula R 6.31 41 12 -1

Young adults
Inferior frontal gyrus, pars opercularis R 47 8.48 43 12 21
Inferior frontal gyrus, pars opercularis R 7.08 53 12 18
Superior frontal gyrus R 46 8.28 18 2 65
Middle frontal gyrus R 6.94 31 -3 62
Superior frontal gyrus R 6.44 21 12 65
Insula R 75 7.22 43 15 2
Frontal operculum R 6.76 33 25 7
Frontal operculum R 6.53 36 15 10
Supramarginal gyrus R 23 7.21 58 -32 48

Table S21. PPI seed: Right Precuneus [8 -65 29].

Anatomical structure Hemi k t x y z
Older adults
Insula R 295 9.27 33 22 10
Inferior frontal gyrus, pars triangularis R 9.27 53 25 10
Insula R 8.97 41 25 -6
Inferior frontal gyrus, pars triangularis R 8.79 46 25 4
Supramarginal gyrus R 410 9.20 53 -40 46
Angular gyrus R 9.18 56 -45 32
Supramarginal gyrus R 8.91 63 -42 35
Angular gyrus R 8.72 56 -47 48
Middle frontal gyrus R 125 8.78 33 47 32
Middle frontal gyrus R 8.04 41 42 29
Middle frontal gyrus R 7.39 46 45 21
Supramarginal gyrus L 42 8.77 -61 -47 32
Supramarginal gyrus L 6.89 -54 -50 35
Inferior frontal gyrus, pars orbitalis R 61 8.4 48 45 -6
Inferior frontal gyrus, pars triangularis R 8.03 51 37 -1
Inferior frontal gyrus, pars triangularis R 7.78 48 40 7
Inferior frontal gyrus, pars triangularis R 7.38 41 42 -1
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Anatomical structure Hemi k t x y z
Presupplementary motor area R 35 8.06 4 7 60
Presupplementary motor area R 7.44 6 10 68
Inferior frontal gyrus, pars triangularis L 70 8.02 -41 17 7
Inferior frontal gyrus, pars triangularis L 7.85 -36 30 4
Inferior frontal gyrus, pars opercularis L 6.84 -46 10 7
Superior temporal gyrus R 32 7.86 53 -15 -4
Middle temporal gyrus R 7.03 56 -30 -1
Superior temporal gyrus R 6.77 63 -20 -1
Precentral gyrus R 93 7.85 46 7 35
Middle frontal gyrus R 6.89 41 10 46
Middle frontal gyrus R 6.88 41 15 29
Precentral gyrus R 6.82 43 5 26
Inferior frontal gyrus, pars opercularis R 21 7.77 56 15 24
Angular gyrus L 39 7.61 -51 -52 48
Supramarginal gyrus L 7.19 -59 -47 43
Lateral occipital cortex R 29 7.15 33 -67 29
Lateral occipital cortex R 6.78 26 -77 26

Young adults
Supramarginal gyrus R 1300 9.69 61 -45 26
Angular gyrus R 8.29 63 -47 18
Supramarginal gyrus R 8.28 51 -42 13
Supramarginal gyrus R 8.17 58 -32 43
Superior frontal gyrus R 21 9.35 8 30 54
Superior frontal gyrus R 185 9.03 11 5 62
Superior frontal gyrus R 8.40 16 12 65
Superior frontal gyrus R 7.35 11 -10 68
Superior frontal gyrus R 6.78 18 -3 73
Insula L 194 8.80 -44 10 -4
Insula L 7.86 -46 2 4
Insula L 7.81 -34 2 0
Insula L 6.91 -44 22 -6
Precentral gyrus R 79 8.36 46 -3 48
Middle frontal gyrus R 6.85 43 -3 57
Precentral gyrus R 6.53 51 2 40
Precentral gyrus R 6.49 33 -8 48
Anterior cingulate cortex, dorsal part R 147 7.97 11 17 35
Anterior cingulate cortex, dorsal part L 7.14 -1 5 43
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Anatomical structure Hemi k t x y z
Anterior cingulate cortex L 6.79 -4 25 24
Anterior cingulate cortex, dorsal part R 6.00 4 -5 40
Middle temporal gyrus R 161 7.92 48 -60 13
Middle temporal gyrus R 7.44 56 -52 2
Middle temporal gyrus R 6.88 56 -57 10
Middle temporal gyrus R 6.34 43 -67 -1
Angular gyrus L 201 7.84 -61 -50 35
Supramarginal gyrus L 7.80 -64 -47 26
Supramarginal gyrus L 7.40 -64 -40 32
Central operculum L 6.85 -59 -23 16
Posterior cingulate cortex R 187 7.60 8 -30 46
Precuneus R 7.35 6 -42 51
Precentral gyrus R 7.35 6 -18 48
Precuneus R 7.15 8 -57 62
Posterior cingulate cortex L 24 7.59 -1 -25 26
Posterior cingulate cortex R 6.86 6 -28 29
Superior occipital gyrus L 24 7.39 -16 -77 43
Lateral occipital cortex L 38 7.34 -31 -82 16
Lateral occipital cortex L 6.37 -29 -92 18
Cuneus R 31 7.32 18 -82 26
Cuneus R 58 7.30 13 -75 26
Lateral occipital cortex R 6.51 13 -75 46
Cuneus R 6.23 13 -75 35
Cuneus R 6.0 8 -80 40
Lateral occipital cortex R 61 7.30 31 -75 24
Calcarine gyrus R 50 7.11 1 -70 13
Lingual gyrus R 6.44 4 -80 2
Intracalcarine cortex L 6.38 -6 -75 18
Postcentral gyrus L 20 6.74 -9 -47 57
Precentral gyrus L 6.33 -14 -37 43
Fusiform gyrus R 24 6.67 36 -67 -15
Fusiform gyrus R 6.66 28 -72 -12
Middle frontal gyrus R 23 6.51 31 40 26
Middle frontal gyrus R 6.22 41 42 29
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Table S22. Results for linear model for within and between network connectivity.

PPI variable FC IV b SE t p
Semantic fluency > Within MDN Intercept 0.05 0.02 2.70 0.009
Counting Age 0.005 0.03 0.18 0.85

Within DMN Intercept -0.002 0.02 -0.07 0.95
Age 0.02 0.03 0.50 0.63

Between MDN and DMN Intercept 0.10 0.02 4.47 < 0.001
Age 0.04 0.03 1.25 0.22

Note. Significant effects are marked in bold: p < Meff-corrected alpha of 0.018; FC Functional connec-
tivity; IV Independent variable; MDN Multiple-demand network; DMN Default-mode network.

Table S23. Results for generalized linear mixed models for within- and between-network
functional connectivity effects, age, and condition on accuracy and response time.

Accuracy Response time
Coefficient Log-Odds Conf. Int (95%) p Estimates Conf. Int (95%) p

Intercept 3.09 2.48 – 3.70 < 0.001 6.53 6.48 – 6.58 < 0.001
Within-MDN FC 0.22 -1.41 – 1.84 0.592 -0.13 -0.28 – 0.03 0.493
Within-DMN FC -0.82 -2.42 – 0.79 0.302 -0.35 -0.53 – -0.18 < 0.001
Between-network FC 0.56 -1.22 – 2.34 0.556 0.53 0.36 – 0.71 < 0.001
Age -0.17 -0.29 – -0.01 0.11 -0.01 -0.02 – 0.01 < 0.001
Education -0.15 -0.29 – -0.01 0.028 -0.01 -0.02 – 0.01 0.061
Within-MDN FC * Age 1.15 -1.93 – 4.23 0.469 0.94 0.60 – 1.28 < 0.001
Within-DMN FC * Age 2.06 -0.77 – 4.90 0.157 0.90 0.62 – 1.19 < 0.001
Between-network FC * Age -2.41 -5.42 – 0.60 0.119 -0.79 -1.10 – -0.47 < 0.001
Random Effects
δ2 3.29 0.13
θ00 0.22 Subj 0.01 Subj

1.71 Category 0.00 Category
ICC 0.37 0.12
N 58 Subj 58 Subj

20 Category 20 Category
Observations 9837 9675
Marginal R2 / Conditional R2 0.002 / 0.371 0.027 / 0.143

Note. Significant effects are marked in bold. Contrasts are sum coded. P-values were obtained via
likelihood ratio tests. Conf. Int. Confidence interval.
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Table S24. . Results of post-hoc tests for two-way interactions Age x Connectivity measure
for response time model. P-values are Bonferroni-corrected.

Contrast FC Estimate SE df Conf. Int (95%) z p

OA – YA Within MDN 636 118 Inf 405 – 867 5.39 < 0.001
Within DMN 604 100 Inf 407 – 800 6 < 0.001
Between MDN and DMN -516 110 Inf -732 – -301 -4.69 < 0.001

Note. Significant effects are marked in bold. FC functional connectivity; SE standard error; df degrees of
freedom; Conf. Int confidence intervals.
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Figure S1. Comparison of different preprocessing pipelines. Plots show univariate results for
preprocessing with fMRIPrep 20.2.3 and SPM12 in each age group for contrasts (A) Semantic fluency >
Counting and (B) Counting > Semantic fluency. Results are FWE-corr. p < 0.05 at peak-level with a
minimum cluster size of k = 10 voxels.
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Figure S2. Comparison of within-group task effects for two different resampling procedures.
Using the MNI standard template and a study-specific template. Results are FWE-corr. p < 0.05 at
peak-level with a minimum cluster size of k = 10 voxels.

Figure S3 displays all 55 components resolved through our multivariate ICA analysis.
Please see the Supplementary Material available online for all components: Link to

https://academic.oup.com/cercor/advance-article-abstract/doi/10.1093/cercor/bhac387/6747069#supplementary-data
https://academic.oup.com/cercor/advance-article-abstract/doi/10.1093/cercor/bhac387/6747069#supplementary-data
https://academic.oup.com/cercor/advance-article-abstract/doi/10.1093/cercor/bhac387/6747069#supplementary-data
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Supplementary Materials

Figure S4. Plots of global cost efficiency (GCE) against cost for different filtering options of
graphs. We compared the GCE of two topological (minimum spanning tree (MST) and orthogonal
minimum spanning tree (OMST)) and one proportional (5-20% strongest edge weights) edge filtering
method in both age groups. Symbols indicate the average value in each group while densities display
value distribution.

https://academic.oup.com/cercor/advance-article-abstract/doi/10.1093/cercor/bhac387/6747069#supplementary-data
https://academic.oup.com/cercor/advance-article-abstract/doi/10.1093/cercor/bhac387/6747069#supplementary-data
https://academic.oup.com/cercor/advance-article-abstract/doi/10.1093/cercor/bhac387/6747069#supplementary-data
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Figure S5. Within- and between-network functional connectivity results for denoising pipeline
without global signal regression. (a) Chord diagrams display significant results of functional coupling
for whole ICA-derived networks. Age differences were assessed using permutation testing in network-
based statistics (cluster-forming threshold at p = 0.01, FWE-corrected significance threshold at p =
0.025 with 10,000 permutations). (b) Heatmaps show functional coupling between individual regions of
interest (n = 121) of the seven networks. Note that there were no significant age differences at p = 0.025.
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Figure S6. Comparison of denoising pipelines with global signal regression (GSR) and without
for association between motion (mean FD) and functional connectivity (FC). The upper panels
display the proportion of FC values that are correlated to mean FD at a threshold p < 0.05, uncorrected.
The bottom panels show the distribution of all QC-FC correlations as smoothed kernel density estimates
and boxplots with medians and interquartile ranges.

Supplementary Results

Figure S7. Heatmaps display significant results of functional coupling between the regions of
interest (n = 121) of the ICA-derived networks. Connectivity values are Fisher-transformed partial
correlations. Bold frames indicate significant values which are based on cPPI-derived significance values
in the age groups while age differences were assessed using permutation testing in network-based
statistics (cluster-forming threshold at p = 0.01, FWE-corrected significance threshold at p = 0.025 with
10,000 permutations).
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Table S1. Behavioral results of mixed-effects models for accuracy and response time

Accuracy Response time
Coefficient Log-Odds CI z-value p Estimates CI t-value p

Intercept 4.63 4.15 – 5.10 19.09 <0.001 6.43 6.39 – 6.47 326.96 <0.001
Age -0.68 -1.13 – -0.23 -2.98 0.003 0.01 0.00 – 0.03 2.30 0.021
Condition -3.16 -4.06 – -2.26 -6.90 <0.001 0.15 0.10 – 0.19 6.29 <0.001
Difficulty 2.01 1.50 – 2.51 7.76 <0.001 -0.07 -0.10 – -0.04 -4.71 <0.001
Education -0.11 -0.24 – 0.01 -1.75 0.080 -0.01 -0.01 – 0.00 -1.88 0.060
Age * Condition 0.64 -0.18 – 1.46 1.53 0.125 0.08 0.06 – 0.10 8.94 <0.001
Age * Difficulty -0.67 -1.08 – -0.26 -3.19 0.001 -0.00 -0.02 – 0.01 -0.39 0.695
Random Effects
δ2 3.29 0.09
θ00 0.19 Subj 0.01 Subj

0.29 Category 0.00 Category
ICC 0.13 0.09
Observations 19710 18877
Marg R2 / Cond R2 0.495 / 0.559 0.065 / 0.148

Note. Significant effects are marked in bold. Contrasts are sum coded. P-values were obtained via
likelihood ratio tests. CI Confidence interval.

Table S2. Jaccard similarity coefficients with the 7-networks parcellation scheme

IC06 IC09 IC13 IC16 IC18 IC45 IC52

Control 0.128 0.287 0.039 0.054 0.194 0.161 0.090
Default 0.155 0.154 0.234 0.412 0.133 0.133 0.043
Dorsal attention 0.073 0.089 0.067 0.022 0.139 0.059 0.301
Limbic 0.000 0.004 0.012 0.014 0.008 0.005 0.011
Ventral attention 0.039 0.045 0.025 0.039 0.053 0.211 0.097
Somatomotor 0.017 0.064 0.029 0.057 0.067 0.044 0.052
Visual 0.038 0.015 0.090 0.046 0.045 0.028 0.177

General semantic cognition 0.032 0.030 0.072 0.194 0.201 0.092 0.050
Semantic control 0.012 0.036 0.012 0.067 0.153 0.091 0.027

Note. The selected network labels for the respective independent components are shown in bold while
all cognitive networks that showed a higher similarity coefficient than J = 0.15 are shown in italics.

Table S3. Significant clusters of task-relevant independent components

Anatomical structure Hemi k t x y z

IC 06
Precuneus Cortex R 1057 19.94 5 -71 35
Precuneus Cortex L 17.67 -5 -66 38
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Anatomical structure Hemi k t x y z

Cingulate Gyrus, posterior division R 17.43 2 -41 35
Angular Gyrus L 242 14.56 -45 -64 46
Angular Gyrus L 13.29 -48 -56 44
Angular Gyrus R 289 14.31 47 -56 44
Angular Gyrus R 10.44 54 -51 41
Angular Gyrus R 9.58 52 -54 33
Cingulate Gyrus, anterior division R 51 7.58 2 43 5
Paracingulate Gyrus R 6.17 5 46 -3
Paracingulate Gyrus L 25 6.96 -3 38 22
Frontal Pole L 16 6.43 -23 66 5

IC 09
Frontal Pole R 564 21.83 42 48 -9
Frontal Pole R 20.52 49 43 -9
Frontal Pole R 19.22 29 56 5
Middle Frontal Gyrus R 810 21.33 49 31 33
Middle Frontal Gyrus R 18.52 37 21 55
Middle Frontal Gyrus R 18.25 52 16 41
Angular Gyrus R 520 20.75 52 -51 44
Angular Gyrus R 20.72 57 -56 38
Angular Gyrus R 20.26 39 -61 52
Middle Temporal Gyrus, posterior division R 104 18.62 62 -36 -12
Middle Temporal Gyrus, temporooccipital part R 16.94 59 -46 -12
Middle Temporal Gyrus, temporooccipital part R 14.67 67 -39 -3
Superior Frontal Gyrus R 335 18.38 5 36 44
Paracingulate Gyrus R 18.04 7 26 46
Superior Frontal Gyrus L 10.93 -5 33 46
Angular Gyrus L 364 15.31 -48 -54 55
Angular Gyrus L 12.43 -45 -61 52
Angular Gyrus L 11.15 -38 -59 46
Frontal Pole L 231 14.18 -43 53 2
Frontal Pole L 13.29 -38 61 -1
Frontal Pole L 10.39 -48 46 -12
Middle Frontal Gyrus L 200 10.80 -50 26 35
Middle Frontal Gyrus L 10.27 -48 21 44
Middle Temporal Gyrus, posterior division L 41 7.73 -63 -36 -9
Superior Frontal Gyrus L 10 6.08 -23 18 57

IC 13
Precuneus Cortex L 1459 32.20 -5 -59 19
Precuneus Cortex R 32.11 5 -59 27
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Anatomical structure Hemi k t x y z

Precuneus Cortex R 26.92 7 -54 16
Angular Gyrus L 525 20.64 -48 -71 30
Angular Gyrus L 18.65 -40 -66 27
Angular Gyrus L 14.87 -38 -79 41
Parahippocampal Gyrus, posterior division L 207 18.74 -25 -31 -17
Parahippocampal Gyrus, anterior division L 10.87 -20 -22 -20
Lingual Gyrus L 10.86 -25 -41 -6
Superior Frontal Gyrus L 228 16.63 -23 28 49
Angular Gyrus R 461 15.89 52 -64 24
Angular Gyrus R 13.36 54 -69 35
Angular Gyrus R 11.74 44 -54 22
Frontal Medial Cortex L 718 15.37 -5 51 -9
Cingulate Gyrus, anterior division R 13.77 2 33 -9
Frontal Medial Cortex R 12.56 2 53 -6
Middle Temporal Gyrus, anterior division R 109 14.58 64 1 -17
Parahippocampal Gyrus, posterior division R 133 11.99 27 -31 -17
Parahippocampal Gyrus, anterior division R 11.68 22 -19 -23
Superior Frontal Gyrus R 185 11.08 22 31 46

IC 16
Frontal Pole L 1390 23.11 -5 48 46
Superior Frontal Gyrus R 21.03 14 31 57
Paracingulate Gyrus L 20.26 -5 53 19
Middle Temporal Gyrus, anterior division L 1382 23.08 -55 1 -20
Middle Temporal Gyrus, posterior division L 21.78 -58 -31 -3
Frontal Pole L 19.89 -50 43 -12
Angular Gyrus L 356 22.67 -55 -59 30
Supramarginal Gyrus, posterior division L 14.15 -63 -49 41
Inferior Frontal Gyrus, pars triangularis R 313 17.26 52 31 -6
Temporal Pole R 12.61 37 23 -23
Frontal Orbital Cortex R 11.27 44 23 -14
Temporal Pole R 238 16.84 52 16 -25
Middle Temporal Gyrus, anterior division R 16.64 52 3 -31
Temporal Pole R 15.86 49 11 -34
Middle Temporal Gyrus, posterior division R 193 16.70 64 -29 -3
Middle Temporal Gyrus, posterior division R 15.08 54 -24 -6
Middle Temporal Gyrus, posterior division R 14.76 67 -36 -1
Middle Frontal Gyrus L 151 16.01 -40 16 52

IC 18
Insular Cortex L 1554 28.83 -33 21 -1
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Anatomical structure Hemi k t x y z

Inferior Frontal Gyrus, pars triangularis L 21.00 -48 28 19
Middle Frontal Gyrus L 19.65 -50 21 33
Superior Frontal Gyrus L 511 22.76 -5 31 44
Paracingulate Gyrus L 19.99 -5 13 52
Paracingulate Gyrus R 18.29 2 21 46
Inferior Temporal Gyrus, temporooccipital part L 984 18.99 -58 -49 -12
Superior Temporal Gyrus, posterior division L 10.54 -60 -31 5
Parahippocampal Gyrus, posterior division L 9.82 -30 -31 -17
Angular Gyrus L 270 16.99 -35 -59 41
Angular Gyrus L 16.88 -30 -66 49
Angular Gyrus L 16.52 -30 -71 41
Superior Frontal Gyrus L 50 11.92 -23 26 46
Superior Frontal Gyrus L 9.63 -15 36 46
Frontal Pole L 8.39 -13 48 44
Temporal Fusiform Cortex, anterior division L 22 9.50 -38 -9 -28
Superior Temporal Gyrus, anterior division R 32 9.14 59 -4 -1

IC 45
Frontal Pole L 583 23.44 -25 38 30
Frontal Pole L 21.05 -23 46 24
Frontal Pole L 19.36 -30 53 24
Paracingulate Gyrus L 565 21.83 -5 31 33
Cingulate Gyrus, anterior division L 21.81 -5 31 22
Paracingulate Gyrus R 21.76 14 28 27
Frontal Pole R 630 20.80 27 48 30
Frontal Pole R 20.35 27 41 24
Frontal Pole R 18.56 37 43 30
Frontal Operculum Cortex L 225 16.57 -35 16 11
Frontal Orbital Cortex L 15.46 -33 26 -6
Inferior Frontal Gyrus, pars opercularis L 15.04 -50 13 -3
Frontal Operculum Cortex R 280 16.15 47 18 -3
Frontal Operculum Cortex R 15.26 39 18 11
Frontal Orbital Cortex R 14.28 39 18 -12
Supramarginal Gyrus, posterior division R 157 14.98 62 -44 27
Supramarginal Gyrus, posterior division R 13.20 67 -39 35
Supramarginal Gyrus, posterior division R 5.93 62 -39 49
Superior Frontal Gyrus L 27 14.57 -13 3 68
Superior Frontal Gyrus L 12.61 -8 8 63
Supramarginal Gyrus, posterior division L 41 11.77 -60 -44 27
Inferior Frontal Gyrus, pars opercularis R 22 8.01 52 11 11
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Anatomical structure Hemi k t x y z

Inferior Frontal Gyrus, pars opercularis R 6.73 54 13 22
Frontal Pole L 27 7.76 -30 46 -14
Inferior Frontal Gyrus, pars opercularis L 17 7.00 -50 11 11

IC 52
Angular Gyrus R 1860 22.56 27 -69 44
Angular Gyrus R 21.55 39 -76 27
Inferior Temporal Gyrus, temporooccipital part R 20.54 52 -59 -12
Lateral Occipital Cortex, inferior division L 1437 21.63 -48 -66 2
Angular Gyrus L 21.17 -43 -81 16
Angular Gyrus L 20.11 -28 -76 30
Temporal Occipital Fusiform Cortex L 24 12.07 -28 -51 -12
Temporal Fusiform Cortex, posterior division L 8.92 -30 -41 -12
Temporal Occipital Fusiform Cortex R 15 8.49 37 -44 -23

Note. Results are based on one-sided t-tests and FWE-corrected p < 0.05 at peak level with a cluster
extent threshold k = 10.

Table S4. Results for significant effects of cPPI connectivity for accuracy

Accuracy Accuracy
Coefficient Log-Odds CI Statistic p Log-Odds CI Statistic p

Intercept 2.99 2.38 – 3.60 9.58 <0.001 3.19 2.58 – 3.80 10.21 <0.001
DMN A+C & VAN B -0.93 -1.66 – -0.21 -2.52 0.012
Age -0.03 -0.28 – 0.22 -0.23 0.815 0.05 -0.28 – 0.38 0.31 0.754
Education -0.12 -0.24 – 0.01 -1.80 0.072 -0.16 -0.29 – -0.02 -2.27 0.023
Motion RMSD 1.74 -1.46 – 4.94 1.07 0.286 -2.51 -5.39 – 0.36 -1.72 0.086
Age * DMN A+C & VAN B 2.01 0.89 – 3.13 3.51 <0.001
VAN B & DAN A -0.74 -1.91 – 0.43 -1.25 0.213
Age * VAN B & DAN A -3.43 -5.20 – -1.65 -3.78 <0.001
Random Effects
δ2 3.29 3.29
θ00 0.18 sub 0.19 sub

1.71 Category 1.71 Category
ICC 0.37 0.37
Observations 9837 9837
Marg R2 / Cond R2 0.012 / 0.373 0.013 / 0.374

Note. Significant effects are marked in bold. Contrasts are sum coded. P-values were obtained via
likelihood ratio tests. CI Confidence interval.
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Table S5. Results for significant effects of cPPI connectivity for response time

Response time Response time
Coefficient Estimates CI Statistic p Estimates CI Statistic p

Intercept 6.48 6.44 – 6.52 324.58 <0.001 6.48 6.44 – 6.53 297.98 <0.001
DMN A & SEM -0.22 -0.30 – -0.14 -5.41 <0.001
Age 0.07 0.05 – 0.10 5.40 <0.001 0.07 0.04 – 0.10 4.82 <0.001
Education 0.01 -0.00 – 0.02 1.25 0.211 -0.00 -0.01 – 0.01 -0.08 0.935
Motion RMSD 0.40 0.14 – 0.65 3.02 0.003 0.24 -0.01 – 0.49 1.87 0.061
Age * DMN A & SEM 0.69 0.55 – 0.83 9.54 <0.001
DMN B & DAN A -0.23 -0.31 – -0.14 -5.42 <0.001
Age * DMN B & DAN A 0.56 0.41 – 0.72 7.21 <0.001
Random Effects
δ2 0.11 0.11
θ00 0.01 sub 0.01 sub

0.00 Category 0.00 Category
ICC 0.08 0.10
Observations 9069 9069
Marg R2 / Cond R2 0.032 / 0.113 0.020 / 0.118

Note. Significant effects are marked in bold. Contrasts are sum coded. P-values were obtained via
likelihood ratio tests. CI Confidence interval.

Table S5 cont. Results for significant effects of cPPI connectivity for response time

Response time Response time
Coefficient Estimates CI Statistic p Estimates CI Statistic p

Intercept 6.53 6.49 – 6.57 302.80 <0.001 6.52 6.47 – 6.56 302.21 <0.001
Age 0.04 0.02 – 0.07 3.15 0.002 0.12 0.09 – 0.16 7.05 <0.001
Education 0.00 -0.01 – 0.01 0.28 0.783 0.00 -0.01 – 0.01 0.03 0.978
Motion RMSD 0.33 0.08 – 0.58 2.60 0.009 -0.29 -0.56 – -0.01 -2.05 0.041
SEM & VAN B 0.02 -0.05 – 0.09 0.47 0.642
Age * SEM & VAN B -0.57 -0.79 – -0.35 -5.12 <0.001
VAN B & DAN A -0.48 -0.60 – -0.35 -7.62 <0.001
Age * VAN B & DAN A -0.44 -0.60 – -0.28 -5.37 <0.001
Random Effects
δ2 0.11 0.11
θ00 0.01 sub 0.01 sub

0.00 Category 0.00 Category
ICC 0.09 0.10
Observations 9069 9069
Marg R2 / Cond R2 0.020 / 0.113 0.042 / 0.138

Note. Significant effects are marked in bold. Contrasts are sum coded. P-values were obtained via
likelihood ratio tests. CI Confidence interval.
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Table S6. Results for linearmixed-effects model on the effect of age on brain system segregation

Brain system segregation
Coefficient Estimates CI Statistic p

Intercept 0.48 0.45 – 0.51 31.57 <0.001
Age 0.08 0.04 – 0.13 3.68 0.001
Motion RMSD -0.76 -1.20 – -0.33 -3.52 0.001
Random Effects
δ2 0.00
θ00 sub 0.00
ICC 0.06
Observations 58
Marginal R2 / Conditional R2 0.523 / 0.553

Note. Significant effects are marked in bold. Contrasts are sum coded. P-values were obtained via
likelihood ratio tests. CI Confidence interval.

Table S7. Results for mixed-effects models on the effect of brain system segregation on
accuracy and response time

Accuracy Response time
Coefficient Log-Odds CI Statistic p Estimates CI Statistic p

Intercept 2.97 2.35 – 3.58 9.47 <0.001 6.55 6.49 – 6.60 242.95 <0.001
Global segregation 2.62 0.64 – 4.61 2.59 0.010 -1.31 -1.54 – -1.08 -11.29 <0.001
Age 0.08 -0.19 – 0.35 0.58 0.560 -0.02 -0.05 – 0.01 -1.57 0.116
Education -0.14 -0.28 – -0.01 -2.08 0.038 0.02 0.01 – 0.04 3.50 <0.001
Motion RMSD 0.83 -2.15 – 3.81 0.55 0.584 -1.07 -1.41 – -0.73 -6.17 <0.001
Age * Glob Seg -5.01 -8.17 – -1.85 -3.11 0.002 1.48 1.13 – 1.83 8.26 <0.001
Random Effects
δ2 3.29 0.11
θ00 0.17 sub 0.02 sub

1.71 Category 0.00 Category
ICC 0.36 0.15
Observations 9837 9069
Marg R2 / Cond R2 0.010 / 0.370 0.050 / 0.193

Note. Significant effects are marked in bold. Contrasts are sum coded. P-values were obtained via
likelihood ratio tests. CI Confidence interval, Glob Seg Global Segregation.

Table S8. Results for linear mixed-effects model on the effect of age on global efficiency

Global efficiency
Coefficient Estimates CI Statistic p
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Intercept 0.10 0.10 – 0.11 38.20 <0.001
Age 0.02 0.01 – 0.03 5.02 <0.001
Motion RMSD -0.08 -0.16 – -0.00 -2.11 0.040
Random Effects
δ2 0.00
θ00 sub 0.00
ICC 0.16
Observations 58
Marginal R2 / Conditional R2 0.511 / 0.589

Note. Significant effects are marked in bold. Contrasts are sum coded. P-values were obtained via
likelihood ratio tests. CI Confidence interval.

Table S9. Results for mixed-effects models on the effect of global efficiency on accuracy and
response time

Accuracy Response time
Coefficient Log-Odds CI Statistic p Estimates CI Statistic p

Intercept 3.05 2.42 – 3.67 9.54 <0.001 6.47 6.43 – 6.52 296.92 <0.001
Global efficiency 13.53 4.33 – 22.73 2.88 0.004 0.55 -0.31 – 1.41 1.25 0.212
Age 0.13 -0.17 – 0.43 0.86 0.387 0.04 0.01 – 0.07 2.85 0.004
Education -0.10 -0.23 – 0.04 -1.42 0.157 0.01 -0.01 – 0.02 1.05 0.293
Motion RMSD 0.96 -1.93 – 3.85 0.65 0.517 0.60 0.32 – 0.88 4.19 <0.001
Age * Glob eff -13.71 -33.96 – 6.54 -1.33 0.185 -5.50 -7.23 – -3.76 -6.21 <0.001
Random Effects
δ2 3.29 0.11
θ00 0.24 sub 0.01 sub

1.71 Category 0.00 Category
ICC 0.37 0.10
Observations 9837 9069
Marg R2 / Cond R2 0.009 / 0.378 0.018 / 0.112

Note. Significant effects are marked in bold. Contrasts are sum coded. P-values were obtained via
likelihood ratio tests. CI Confidence interval, Glob Eff Global Efficiency.

Table S10. Results for linear mixed-effects model on the effect of age on brain segregation as
a function of network type

Network segregation
Coefficient Estimates CI Statistic p

Intercept 0.42 0.38 – 0.45 23.69 <0.001
Age -0.11 -0.13 – -0.08 -7.09 <0.001
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DMN A+C 0.22 0.18 – 0.26 10.67 <0.001
DMN B 0.06 0.02 – 0.10 2.82 0.005
SEM 0.02 -0.02 – 0.06 0.99 0.323
CONT B 0.13 0.09 – 0.17 6.43 <0.001
VAN B 0.17 0.13 – 0.21 8.30 <0.001
DAN A 0.31 0.27 – 0.35 14.86 <0.001
Motion RMSD -0.67 -0.98 – -0.36 -4.24 <0.001
Random Effects
δ2 0.01
θ00 sub 0.00
ICC 0.10
Observations 406
Marginal R2 / Conditional R2 0.552 / 0.599

Note. Significant effects are marked in bold. Contrasts are sum coded. P-values were obtained via
likelihood ratio tests. CI Confidence interval.

Table S11. Results for mixed-effects models on the effect of network segregation on accuracy
and response time

Accuracy Response time
Coefficient Log-Odds CI Statistic p Estimates CI Statistic p

Intercept 2.93 2.32 – 3.54 9.37 <0.001 6.55 6.47 – 6.63 159.97 <0.001
DMN A 0.49 -0.27 – 1.26 1.26 0.208 0.62 0.52 – 0.72 12.02 <0.001
DMN A+C -0.28 -1.67 – 1.12 -0.39 0.698 -0.24 -0.45 – -0.02 -2.12 0.034
DMN B 1.01 -0.18 – 2.20 1.67 0.095 0.21 0.04 – 0.38 2.41 0.016
SEM -0.24 -1.19 – 0.71 -0.50 0.619 -0.59 -0.71 – -0.46 -9.17 <0.001
CONT B 1.75 0.15 – 3.34 2.15 0.032 -0.41 -0.67 – -0.15 -3.11 0.002
VAN B 1.15 0.06 – 2.24 2.07 0.038 -0.16 -0.31 – 0.00 -1.96 0.050
DAN A -2.20 -3.46 – -0.94 -3.43 0.001 -0.31 -0.45 – -0.18 -4.49 <0.001
Age -0.16 -0.52 – 0.20 -0.87 0.384 -0.10 -0.16 – -0.05 -3.60 <0.001
Education -0.10 -0.24 – 0.04 -1.42 0.154 -0.02 -0.04 – -0.00 -2.45 0.014
Motion RMSD 4.34 0.87 – 7.81 2.45 0.014 -0.38 -0.90 – 0.13 -1.46 0.145
Age * DMN A 1.35 -0.10 – 2.80 1.82 0.068 -0.82 -1.01 – -0.64 -8.70 <0.001
Age * DMN A+C -1.00 -3.66 – 1.67 -0.73 0.463 -0.29 -0.68 – 0.09 -1.50 0.133
Age * DMN B -2.80 -5.17 – -0.42 -2.31 0.021 0.18 -0.15 – 0.51 1.07 0.284
Age * SEM 2.07 -0.29 – 4.44 1.72 0.086 0.37 -0.11 – 0.85 1.49 0.136
Age * CONT B 1.89 -0.78 – 4.57 1.39 0.165 0.73 0.38 – 1.07 4.11 <0.001
Age * VAN B -5.00 -7.22 – -2.77 -4.40 <0.001 -0.13 -0.45 – 0.19 -0.80 0.425
Age * DAN A -0.28 -3.02 – 2.46 -0.20 0.843 1.79 1.40 – 2.19 8.95 <0.001
Random Effects
δ2 3.29 0.10
θ00 0.07 sub 0.04 sub



Supplementary Material for Study 2 146

1.71 Category 0.00 Category
ICC 0.35 0.30
Observations 9837 9069
Marg R2 / Cond R2 0.033 / 0.372 0.183 / 0.430

Note. Significant effects are marked in bold. Contrasts are sum coded. P-values were obtained via
likelihood ratio tests. CI Confidence interval.

Table S12. Connector hubs in brain graphs of older adults

Network Region of interest Mean PC
DMN A Lateral occipital cortex, superior division 1 0.55
DMN A Angular gyrus 3 0.55
DMN A+C Lateral occipital cortex, superior division 1 0.54
DMN A+C Lateral occipital cortex, superior division 5 0.59
DMN B Frontal pole 2 0.54
DMN B Angular gyrus 0.55
DMN B Middle temporal gyrus, posterior division 2 0.55
SEM Superior frontal gyrus 1 0.54
SEM Paracingulate gyrus 2 0.56
CONT B Frontal pole 1 0.54
CONT B Frontal pole 3 0.55
CONT B Middle frontal gyrus 3 0.55
CONT B Angular gyrus 1 0.56
CONT B Angular gyrus 2 0.62
CONT B Superior frontal gyrus 1 0.54
CONT B Paracingulate gyrus 0.57
CONT B Frontal pole 6 0.54

Note. PC participation coefficient.

Table S13. Connector hubs in brain graphs of young adults

Network Region of interest Mean PC
DMN A Lateral occipital cortex, superior division 1 0.64
DMN A Angular gyrus 3 0.63
DMN A+C Lateral occipital cortex, superior division 1 0.53
DMN B Angular gyrus 0.58
DMN B Middle temporal gyrus, posterior division 4 0.52
SEM Paracingulate gyrus 2 0.53
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CONT B Middle frontal gyrus 3 0.52
CONT B Angular gyrus 1 0.59
CONT B Angular gyrus 2 0.52
CONT B Lateral occipital cortex, superior division 2 0.58

Note. PC participation coefficient.

Table S14. Significant age differences in participation coefficient

Network ROI Term Estimate SE t-value p-value p corr

CONT B Frontal pole 3 YA -0.13 0.03 -3.70 0.001 0.049
CONT B Pre-SMA YA -0.10 0.03 -3.75 0.001 0.043
SEM Superior temporal gyrus YA -0.17 0.04 -4.69 0.001 0.002
DAN A Fusiform cortex 1 YA -0.20 0.04 -4.87 0.001 0.001
DAN A Fusiform cortex 2 YA -0.18 0.04 -4.05 0.001 0.016

Note. SE: standard error, p corr: p-value after correction for familywise error with Bonferroni-Holm
method.
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Figure S1. Individual stimulation sites within a pre-defined mask of the pre-SMA. The mask
was taken from a freely available probabilistic cytoarchitectonic map (Ruan et al., 2018). Yellow nodes
signify individual stimulation sites (n = 30).

Figure S2. Individual stimulation sites within the semantic cognition and the multiple-
demand network. The map of the semantic cognition network was taken from (Jackson, 2021) and
the multiple-demand network from Fedorenko et al. (2013).
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Table S1. Model for DV Accuracy

Comparison Model ∆ AIC df
Random effects ~ stim_type x condition + (1|sub) 0 10

~ stim_type x condition 71.4 9
Fixed effects ~ stim_type x condition x congruency + age + (1|sub) 0 20

~ stim_type x condition + congruency + (1|sub) 55.6 11
~ stim_type x condition + congruency + age + (1|sub) 57.6 12
~ stim_type x condition + (1|sub) 131.6 10
~ stim_type x condition + task + (1|sub) 131.6 10
~ stim_type x condition + stim_order + (1|sub) 133.2 11
~ stim_type x condition + age + (1|sub) 133.6 11

Note. Winning models are highlighted in bold; AIC Akaike Information Criterion

Table S2. Model for DV log(Response Time)

Comparison Model ∆ AIC df
Random effects ~ stim_type x condition + (1 + stim_-

type|sub) + (1|stimulus_audio)
0.0 17

~ stim_type x condition + (1 + stim_type|sub) +
(1|stimulus_picture)

1058.4 17

~ stim_type x condition + (1 + stim_type|sub) 1971.3 16
~ stim_type x condition + (1|sub) 2644.0 11
~ stim_type x condition 8421.5 10

Fixed effects ~ stim_type x condition + congruency + age
+ (1 + stim_type|sub) + (1|stimulus_audio)

0 19

~ stim_type x condition + congruency + (1 +
stim_type|sub) + (1|stimulus_audio)2

7.4 18

~ stim_type x condition + age + (1 + stim_-
type|sub) + (1|stimulus_audio)

222.8 18

~ stim_type x condition + (1 + stim_type|sub) +
(1|stimulus_audio)

230.3 17

~ stim_type x condition + task + (1 + stim_-
type|sub) + (1|stimulus_audio)

230.3 17

~ stim_type x condition + stim_order + (1 +
stim_type|sub) + (1|stimulus_audio)

232.3 18

Interactions ~ stim_type x condition + congruency +
condition x congruency + age + (1 + stim_-
type|sub) + (1|stimulus_audio)

0 21
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~ stim_type x condition + stim_type x congru-
ency + condition x congruency + age + (1 +
stim_type|sub) + (1|stimulus_audio)

2.1 23

~ stim_type x condition x congruency + age +
(1 + stim_type|sub) + (1|stimulus_audio)

8.3 27

~ stim_type x condition + congruency + age +
(1 + stim_type|sub) + (1|stimulus_audio)

302.5 19

Note. Winning models are highlighted in bold; AIC Akaike Information Criterion

Preprocessing of MRI data

Results included in this manuscript come from preprocessing performed using fMRIPrep 20.2.3
(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018)), which is based on Nipype 1.6.1
(Gorgolewski et al. (2011); Gorgolewski et al. (2018)).

Anatomical data preprocessing A total of 1 T1-weighted (T1w) images were found within the
input BIDS dataset. The T1-weighted (T1w) image was corrected for intensity non-uniformity
(INU) with N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants
et al. 2008), and used as T1w-reference throughout the workflow. The T1w-reference was then
skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from
ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal
fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted
T1w using fast (FSL 5.0.9, Zhang, Brady, and Smith 2001). Brain surfaces were reconstructed
using recon-all (FreeSurfer 6.0.1, Dale, Fischl, and Sereno 1999), and the brain mask estimated
previously was refined with a custom variation of the method to reconcile ANTs-derived
and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (Klein et
al. 2017). Volume-based spatial normalization to two standard spaces (MNI152NLin6Asym,
MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration
(ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. The
following templates were selected for spatial normalization: FSL’s MNI ICBM 152 non-linear
6th Generation Asymmetric Average Brain Stereotaxic Registration Model [Evans et al. (2012);
TemplateFlow ID: MNI152NLin6Asym], ICBM 152 Nonlinear Asymmetrical template version
2009c [Fonov et al. (2009); TemplateFlow ID: MNI152NLin2009cAsym],

Functional data preprocessing For each of the 8 BOLD runs found per subject (across all
tasks and sessions), the following preprocessing was performed. First, a reference volume
and its skull-stripped version were generated using a custom methodology of fMRIPrep. A
B0-nonuniformity map (or fieldmap) was estimated based on two (or more) echo-planar
imaging (EPI) references with opposing phase-encoding directions, with 3dQwarp Cox and
Hyde (1997) (AFNI 20160207). Based on the estimated susceptibility distortion, a corrected
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EPI (echo-planar imaging) reference was calculated for a more accurate co-registration with
the anatomical reference. The BOLD reference was then co-registered to the T1w reference
using bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl
2009). Co-registration was configured with six degrees of freedom. Head-motion parameters
with respect to the BOLD reference (transformation matrices, and six corresponding rotation
and translation parameters) are estimated before any spatiotemporal filtering using mcflirt
(FSL 5.0.9, Jenkinson et al. 2002). BOLD runs were slice-time corrected using 3dTshift from
AFNI 20160207 (Cox and Hyde 1997). The BOLD time-series (including slice-timing correction
when applied) were resampled onto their original, native space by applying a single, composite
transform to correct for head-motion and susceptibility distortions. These resampled BOLD
time-series will be referred to as preprocessed BOLD in original space, or just preprocessed
BOLD. The BOLD time-series were resampled into standard space, generating a preprocessed
BOLD run in MNI152NLin6Asym space. First, a reference volume and its skull-stripped version
were generated using a custom methodology of fMRIPrep. Several confounding time-series
were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and
three region-wise global signals. FD was computed using two formulations following Power
(absolute sum of relative motions, Power et al. (2014)) and Jenkinson (relative root mean
square displacement between affines, Jenkinson et al. (2002)). FD and DVARS are calculated
for each functional run, both using their implementations in Nipype (following the definitions
by Power et al. 2014). The three global signals are extracted within the CSF, the WM, and the
whole-brain masks. Additionally, a set of physiological regressors were extracted to allow for
component-based noise correction (CompCor, Behzadi et al. 2007). Principal components are
estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine
filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). tCompCor components are then calculated from the top 2% variable voxels within
the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM)
are generated in anatomical space. The implementation differs from that of Behzadi et al.
in that instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are
subtracted a mask of pixels that likely contain a volume fraction of GM. This mask is obtained
by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it ensures
components are not extracted from voxels containing a minimal fraction of GM. Finally, these
masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in the original
implementation). Components are also calculated separately within the WM and CSF masks.
For each CompCor decomposition, the k components with the largest singular values are
retained, such that the retained components’ time series are sufficient to explain 50 percent
of variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining
components are dropped from consideration. The head-motion estimates calculated in the
correction step were also placed within the corresponding confounds file. The confound time
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series derived from head motion estimates and global signals were expanded with the inclusion
of temporal derivatives and quadratic terms for each (Satterthwaite et al. 2013). Frames that
exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion
outliers. All resamplings can be performed with a single interpolation step by composing all
the pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion
correction when available, and co-registrations to anatomical and output spaces). Gridded
(volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured
with Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos 1964).
Non-gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al. 2014), mostly
within the functional processing workflow. For more details of the pipeline, see the section
corresponding to workflows in fMRIPrep’s documentation.

Figure S3. Results of group-constrained subject-specific parcellation approach for language
localizer task. The figure shows 25 regions of interest (ROIs) that were activated in at least 60% of
participants for the contrast intact > degraded speech after data were parcellated using a watershed
algorithm. To confirm that these parcels were indeed relevant to language processing, independent of
the task, we entered them in a random-effects group-level analysis using the independent data set for
the semantic judgment task at baseline. Results showed that all 25 parcels were significantly stronger
activated for the language task relative to rest (see Table S3).
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Table S3. Results of random-effects analysis semantic judgment > rest for 25 functional ROIs
from localizer contrast

ROI Hemi Name Avg. ROI size Avg. Loc. Mask size Overlap T Df P
1 R pMTG 473 132 1.00 11.21 27.08 0.001
2 R MTG/STG 334 100 0.97 12.61 26.90 0.001
3 R aMTG/ATL 705 195 1.00 13.05 27.20 0.001
4 L MTG 581 157 1.00 13.40 28.35 0.001
5 L ATL 204 52 0.97 13.35 26.86 0.001
6 R Operculum 168 42 0.93 10.31 25.36 0.001
7 L pMTG/AG/SMG 1045 258 1.00 13.49 27.97 0.001
8 L pMTG/STG 86 24 0.97 12.81 26.63 0.001
9 L Temporal pole 126 32 0.97 11.72 26.00 0.001
10 L STG 16 5 0.93 15.05 25.36 0.001
11 L pMTG 19 6 0.93 9.67 26.27 0.001
12 L pMTG 14 4 0.80 6.51 22.38 0.001
13 L Operculum 210 41 1.00 11.95 25.44 0.001
14 R Operculum 252 52 0.87 12.32 21.76 0.001
15 L Precentr. Gyrus 263 52 1.00 12.37 26.24 0.001
16 R Precentr. gyrus 142 29 0.73 9.27 19.72 0.001
17 R AG 97 18 0.77 2.57 20.11 0.009
18 L IFG, pars op. 147 25 0.90 12.58 22.40 0.001
19 R Cerebellum 113 21 0.70 8.81 18.79 0.001
20 L IFG, pars op. 79 17 0.63 10.61 16.42 0.001
21 R Cerebellum 129 22 0.90 9.13 23.09 0.001
22 L Pre-SMA 73 14 0.77 11.87 18.97 0.001
24 R IFG, pars tr. 130 23 0.87 7.31 21.50 0.001
25 L IFG, pars tr. 59 11 0.70 8.97 18.18 0.001
29 L IFG, pars tr. 35 6 0.70 6.27 18.02 0.001

Note. Df Degrees of freedom; p-value after FDR-correction q < 0.05.

Supplementary Results

Table S4. Results of mixed-effects models for accuracy and reaction time

Accuracy Reaction time
Coefficient Log-Odds CI Statistic p Estimates CI Statistic p

Intercept 3.44 3.25 – 3.62 36.71 <0.001 6.90 6.85 – 6.96 242.35 <0.001
Session: baseline -0.62 -1.03 – -0.21 -2.95 0.003 0.19 0.11 – 0.27 4.75 <0.001
Session: active 0.34 -0.10 – 0.78 1.52 0.128 -0.09 -0.13 – -0.04 -3.75 <0.001
Condition: WPM 3.04 2.51 – 3.57 11.22 <0.001 -0.30 -0.37 – -0.23 -8.54 <0.001
Condition: FPM -2.12 -2.49 – -1.76 -11.33 <0.001 0.39 0.32 – 0.45 11.98 <0.001
Congruency: congru-
ent

-0.64 -0.85 – -0.43 -6.05 <0.001 -0.04 -0.06 – -0.03 -6.36 <0.001

Age 0.00 -0.02 – 0.02 0.07 0.943
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Condition WPM *
Congruency congru-
ent

0.63 -1.48 – 2.73 0.58 0.561 -0.14 -0.20 – -0.08 -4.48 <0.001

Condition FPM *Con-
gruency congruent

-1.48 -3.67 – 0.72 -1.32 0.187 0.04 -0.02 – 0.10 1.30 0.195

Session baseline *
Condition WPM

2.04 0.57 – 3.52 2.71 0.007 -0.08 -0.14 – -0.02 -2.51 0.012

Session active * Con-
dition WPM

-1.22 -2.78 – 0.34 -1.54 0.124 0.06 -0.00 – 0.12 1.92 0.055

Session baseline *
Condition FPM

0.70 -0.12 – 1.52 1.67 0.095

Session active * Con-
dition FPM

-0.36 -1.24 – 0.52 -0.81 0.417

Age -1.08 -2.14 – -0.02 -1.99 0.046 0.10 0.06 – 0.14 4.51 <0.001
Session: baseline *
Congruency congru-
ent

-1.59 -2.33 – -0.86 -4.25 <0.001 0.24 0.17 – 0.31 6.54 <0.001

Session: active * Con-
gruency congruent

0.99 -3.20 – 5.18 0.46 0.643

Session: baseline *
Condition: WPM *
Congruency congru-
ent

1.69 -2.64 – 6.01 0.76 0.444

Session: active * Con-
dition: WPM * Con-
gruency congruent

2.40 -0.54 – 5.35 1.60 0.110

Session: baseline *
Condition: FPM *
Congruency congru-
ent

-2.22 -5.32 – 0.87 -1.41 0.159

Session: active * Con-
dition: WPM * Con-
gruency congruent

0.09 0.04 – 0.14 3.40 0.001

Random Effects
δ2 3.29 0.05
θ00 0.17 sub 0.01 stimulus_audio

0.02 sub
θ11 0.05 sub.stim_type1

0.01 sub.stim_type2
ρ01 -0.31 sub.stim_type1

0.30 sub.stim_type2
ICC 0.05 0.45
Observations 15750 15028
Marginal R2 / Condi-
tional R2

0.201 / 0.240 0.198 / 0.560
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Table S5. Univariate fMRI results

Anatomical structure Hemi k t x y z
WPM + FPM > Rest
Superior temporal gyrus L 19000 17.45 -57.66 -1.60 -3.25
Cerebellum L 17.41 -20.34 -51.36 -19.75
Postcentral gyrus R 15.33 51.82 -19.02 46.25
Supplementary motor area R 1074 13.25 4.54 3.38 57.25
Presupplementary motor area R 12.00 4.54 10.84 43.50
Supplementary motor area L 11.69 -7.90 -1.60 60.00
Control Task > Rest
Postcentral gyrus R 17880 17.61 49.33 -21.50 46.25
Superior temporal gyrus R 15.52 51.82 -21.50 7.75
Cerebellum L 15.46 -17.85 -51.36 -19.75
Thalamus L 13 10.55 -2.92 -26.48 -3.25
Precuneus R 106 9.08 14.50 -66.29 46.25
Precuneus R 6.91 14.50 -73.75 38.00
Frontal pole L 129 9.03 -47.70 45.67 5.00
Middle frontal gyrus L 8.84 -37.75 43.18 -0.50
Frontal pole L 8.20 -42.73 55.62 2.25
Precuneus R 11 7.10 4.54 -56.34 54.50
Thalamus L 11 7.06 -12.87 -26.48 -6.00
WPM > FPM
Superior temporal gyrus L 56 7.63 -50.19 -19.02 5.00
Planum temporale L 7.51 -55.17 -33.94 13.25
Superior temporal gyrus L 6.16 -45.22 -26.48 5.00
Planum temporale R 12 7.04 54.30 -21.50 10.50
Superior temporal gyrus R 6.26 44.35 -26.48 10.50
FPM > WPM
Middle frontal gyrus L 483 10.48 -45.22 10.84 40.75
Inferior frontal gyrus, pars triangularis L 10.24 -52.68 20.79 24.25
Inferior frontal gyrus, pars triangularis L 9.09 -52.68 38.21 5.00
Middle temporal gyrus L 166 9.73 -62.63 -51.36 -6.00
Middle temporal gyrus L 8.56 -65.12 -46.38 2.25
Inferior temporal gyrus L 8.41 -52.68 -58.82 -8.75
Inferior parietal lobe L 156 9.45 -30.29 -78.73 43.50
Middle occipital gyrus L 8.25 -27.80 -71.26 32.50
Superior parietal lobe L 8.09 -30.29 -66.29 49.00
Supplementary motor area L 122 7.96 -5.41 15.82 60.00
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Anatomical structure Hemi k t x y z
Superior frontal gyrus L 7.75 -5.41 33.23 46.25
Cerebellum R 10 7.93 36.89 -66.29 -28.00
Middle frontal gyrus L 42 7.87 -35.26 8.35 60.00
Superior frontal gyrus L 7.73 -27.80 15.82 60.00
Middle frontal gyrus L 6.49 -27.80 13.33 49.00
WPM + FPM > Control Task
Fusiform gyrus L 975 13.85 -37.75 -33.94 -22.50
Fusiform gyrus L 12.10 -30.29 -36.43 -19.75
Fusiform gyrus L 10.94 -32.78 -43.90 -17.00
Superior temporal gyrus L 546 13.07 -60.14 -4.09 -6.00
Middle temporal gyrus L 11.95 -65.12 -19.02 -0.50
Temporal pole L 11.65 -52.68 13.33 -17.00
Fusiform gyrus R 743 12.40 34.40 -38.92 -22.50
Fusiform gyrus R 11.73 29.42 -46.38 -17.00
Fusiform gyrus R 9.92 29.42 -31.46 -19.75
Precuneus L 112 11.77 -5.41 -56.34 16.00
Posterior cingulate cortex L 7.52 -0.43 -48.87 27.00
Amygdala R 24 10.51 26.94 -4.09 -17.00
Inferior frontal gyrus, pars orbitalis L 25 9.53 -37.75 35.72 -11.50
Temporal pole R 176 8.95 56.79 5.86 -8.75
Temporal pole R 8.66 54.30 8.35 -19.75
Superior temporal gyrus R 8.57 61.77 -6.58 -6.00
Anterior cingulate cortex L 50 8.67 -7.90 30.74 -11.50
Medial frontal gyrus R 6.42 4.54 28.26 -14.25
Superior frontal gyrus L 42 8.22 -5.41 58.11 29.75
Frontal pole L 6.80 -5.41 63.09 18.75
Frontal pole L 6.50 -7.90 53.14 40.75
Hippocampus L 13 7.65 -20.34 -36.43 -0.50
Precuneus L 6.74 -12.87 -38.92 2.25
Superior frontal gyrus L 12 7.20 -17.85 35.72 54.50
Control Task > WPM + FPM
Frontal pole R 453 13.05 41.86 38.21 29.75
Frontal pole R 11.05 39.38 53.14 13.25
Frontal pole R 9.68 41.86 55.62 5.00
Precuneus R 515 12.09 12.01 -66.29 46.25
Precuneus R 11.31 4.54 -71.26 49.00
Precuneus R 11.03 7.03 -76.24 40.75
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Anatomical structure Hemi k t x y z
Middle frontal gyrus R 222 11.62 34.40 8.35 57.25
Middle frontal gyrus R 7.74 46.84 3.38 51.75
Superior frontal gyrus R 7.59 19.47 10.84 60.00
Angular gyrus R 699 11.36 54.30 -46.38 40.75
Angular gyrus R 9.64 49.33 -53.85 38.00
Angular gyrus R 9.53 41.86 -51.36 46.25
Middle frontal gyrus L 94 11.29 -37.75 33.23 32.50
Middle frontal gyrus L 9.27 -40.24 25.77 38.00
Insula L 49 9.08 -30.29 15.82 7.75
Middle cingulate cortex R 38 9.03 7.03 25.77 38.00
Cerebellum L 63 8.85 -35.26 -63.80 -30.75
Cerebellum L 7.27 -25.31 -66.29 -28.00
Inferior parietal lobe L 181 8.29 -50.19 -51.36 38.00
Inferior parietal lobe L 7.73 -42.73 -48.87 40.75
Angular gyrus L 7.40 -40.24 -56.34 49.00
Cerebellum R 15 7.95 34.40 -53.85 -30.75
Precentral gyrus L 34 7.69 -32.78 -1.60 57.25
Superior frontal gyrus L 6.27 -25.31 -6.58 51.75
Supplementary motor area L 30 7.32 -7.90 -1.60 65.50
Cerebellum L 50 7.14 -35.26 -51.36 -41.75
Cerebellum L 7.13 -35.26 -63.80 -44.50
Insula R 24 7.09 31.91 28.26 5.00
Cerebellum L 11 6.93 -12.87 -71.26 -28.00
Inferior frontal gyrus, pars opercularis R 21 6.88 46.84 13.33 13.25
Inferior frontal gyrus, pars opercularis R 6.76 54.30 18.30 13.25
FPM > Control Task
Superior temporal gyurs L 531 13.63 -57.66 -1.60 -6.00
Temporal pole L 11.56 -52.68 13.33 -17.00
Middle temporal gyrus L 10.76 -62.63 -16.53 -3.25
Fusiform gyrus L 900 13.15 -37.75 -33.94 -22.50
Fusiform gyrus L 12.03 -30.29 -36.43 -19.75
Fusiform gyrus L 10.07 -32.78 -43.90 -17.00
Fusiform gyrus R 677 12.21 34.40 -38.92 -22.50
Fusiform gyrus R 11.49 29.42 -46.38 -17.00
Parahippocampal cortex R 10.45 29.42 -31.46 -19.75
Amygdala R 21 10.31 26.94 -4.09 -17.00
Precuneus L 62 10.29 -5.41 -56.34 16.00
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Anatomical structure Hemi k t x y z
Orbital cortex L 41 10.28 -37.75 35.72 -11.50
Inferior frontal gyrus, pars triangularis L 6.19 -47.70 28.26 -3.25
Temporal pole R 148 9.24 56.79 5.86 -8.75
Temporal pole R 8.67 54.30 8.35 -19.75
Temporal pole R 8.15 51.82 15.82 -17.00
Frontal pole L 59 8.13 -7.90 60.60 32.50
Frontal pole L 7.30 -7.90 53.14 43.50
Frontal pole L 7.21 -12.87 45.67 46.25
Pre-SMA L 34 7.73 -2.92 30.74 -14.25
Pre-SMA L 6.70 -0.43 40.70 -11.50
Posterior cingulate cortex L 20 7.56 -17.85 -36.43 2.25
Thalamus L 6.50 -10.38 -33.94 5.00
Inferior frontal gyrus, pars triangularis L 21 7.19 -50.19 30.74 10.50
Control Task > FPM
Precuneus R 574.00 13.03 12.01 -66.29 49.00
Precuneus R 12.49 4.54 -71.26 49.00
Precuneus R 12.28 7.03 -76.24 40.75
Middle frontal gyrus L 81.00 12.30 -37.75 33.23 32.50
Middle frontal gyrus L 8.58 -40.24 25.77 38.00
Frontal pole R 300.00 11.84 39.38 38.21 32.50
Frontal pole R 10.79 41.86 43.18 24.25
Frontal pole R 9.80 39.38 53.14 13.25
Angular gyrus R 661.00 10.99 54.30 -46.38 40.75
Angular gyrus R 9.20 41.86 -51.36 46.25
Angular gyrus R 9.17 49.33 -46.38 24.25
Middle frontal gyrus R 149.00 9.45 34.40 8.35 57.25
Precentral gyrus R 7.39 51.82 -1.60 46.25
Precentral gyrus R 7.34 46.84 3.38 51.75
Insula L 43.00 9.18 -30.29 15.82 7.75
Cerebellum L 48.00 8.71 -35.26 -63.80 -30.75
Cerebellum L 7.03 -25.31 -66.29 -28.00
Inferior frontal gyrus, pars opercularis R 27.00 8.60 56.79 15.82 5.00
Inferior frontal gyrus, pars opercularis R 6.91 51.82 15.82 13.25
Supramarginal gyrus L 100.00 8.10 -50.19 -51.36 38.00
Supramarginal gyrus L 7.53 -60.14 -43.90 35.25
Supramarginal gyrus L 7.16 -52.68 -43.90 40.75
Pre-SMA L 34.00 7.77 -7.90 -1.60 65.50
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Anatomical structure Hemi k t x y z
Cerebellum L 10.00 7.23 -35.26 -48.87 -44.50
Middle frontal gyrus L 17.00 7.13 -30.29 -1.60 57.25
Cerebellum L 17.00 6.64 -35.26 -63.80 -44.50
Superior frontal gyrus R 10.00 6.23 16.98 3.38 65.50
Superior frontal gyrus R 6.21 14.50 -4.09 73.75

Note. Results are FWE-corrected at peak-level at p < 0.05. WPM: word-picture matching; FPM: feature-
picture matching.

Figure S4. PSC in word-picture matching in 25 regions of interest according to subject-specific group
parcellation for language localizer task.
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Figure S5. PSC in feature-picture matching in 25 regions of interest according to subject-specific group
parcellation for language localizer task.

Figure S6. PSC in tone judgment in 25 regions of interest according to subject-specific group parcellation
for language localizer task.
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Figure S7. (A) For the PPI seed in the right cuneus, stronger functional connectivity with a right
prefrontal cluster after effective iTBS was driven by the tone judgment task. (B) For the PPI seed in the
left ventral SPL, a cluster in left prefrontal cortex dissociated both tasks: It showed stronger coupling
after effective iTBS for tone judgment and stronger decoupling for semantic judgment.

Table S6. Significant clusters – gPPI Effective < sham iTBS

Anatomical structure Hemi k t x y z
Seed: Left SPL [-22.8, -71.3, 54.5]
Middle frontal gyrus L 228 4.68 -22.82 35.72 29.75
Frontal pole L 4.37 -35.26 38.21 29.75
Superior frontal gyrus L 4.05 -7.90 45.67 35.25
Middle frontal gyrus L 3.89 -25.31 28.26 32.50
Frontal pole L 3.61 -10.38 58.11 18.75
Seed: Left SPL [-22.8, -71.3, 46.2]
Frontal pole L 1691 6.59 -22.82 38.21 29.75
Frontal pole L 5.02 -37.75 38.21 29.75
Anterior cingulate gyrus R 4.87 7.03 38.21 2.25
Middle frontal gyrus L 4.79 -25.31 30.74 32.50
Anterior cingulate gyrus L 4.78 -12.87 48.16 5.00
Superior frontal gyrus R 299 5.14 24.45 -9.06 65.50
Pre-supplementary motor cortex L 4.57 -0.43 -9.06 54.50
Superior frontal gyrus R 4.29 12.01 -9.06 65.50
Middle frontal gyrus R 3.87 39.38 0.89 60.00
Superior frontal gyrus R 3.82 26.94 5.86 60.00
Superior parietal lobe L 149 4.68 -42.73 -43.90 54.50
Supramarginal gyrus L 3.69 -40.24 -38.92 40.75
Postcentral gyrus L 3.06 -60.14 -26.48 43.50
Supramarginal gyrus L 2.97 -52.68 -31.46 51.75
Postcentral gyrus L 2.80 -45.22 -28.97 43.50
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Precentral gyrus L 188 4.00 -30.29 -14.04 71.00
Superior frontal gyrus L 3.94 -20.34 -1.60 54.50
Superior frontal gyrus L 3.69 -20.34 -6.58 71.00
Precentral gyrus L 3.54 -42.73 -1.60 51.75
Precentral gyrus L 3.36 -37.75 -9.06 65.50
Seed: Right Cuneus [9.5, -68.8, 21.5]
Frontal pole R 449 4.58 31.91 48.16 29.75
Middle frontal gyrus R 4.33 41.86 55.62 2.25
Frontal pole R 3.85 26.94 53.14 21.50
Frontal pole R 3.79 29.42 63.09 2.25
Frontal pole R 3.71 16.98 63.09 10.50

Note. Results are thresholded at p < 0.01 at peak level and FWE-corrected at p < 0.05 at cluster level.
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